Illusory motion from shadows

Sir — At least since the time of da Vinci, it has been known that shadows can give a qualitative sense of depth\(^1\). Moving shadows, however, have been ignored as a source of information about the motion of three-dimensional objects in both biological and computational theories of vision. Rather, shadows have been considered a source of ambiguity. We show here that shadows can have a strong influence on the perceived three-dimensional motion of objects. The movement of an object’s shadow induces apparent motion in the depth of the object, even when the image of the object itself is stationary.

We used a computer graphics animation consisting of a checkerboard with a central square in front of it, and a shadow moving towards and away from the square (Fig. 1). The size of the square was constant over time, thereby setting the three-dimensional motion cues of object expansion and contraction to indicate no motion in depth. The lack of any translatory motion of the square in the image provided further evidence, based on the assumption of a general viewing position, that the square was stationary in three dimensions. Despite the presence of these strong cues, all observers of the animation reported a strong perceptual impression of a square moving in depth.

If the apparent motion is specific to the processing of cast shadows, reducing the likelihood of labelling a region as a shadow should reduce the probability of obtaining the effect. We tested this prediction by measuring how often observers reported seeing the illusion under four different illumination conditions, generated by crossing two pairs of illumination properties: extended or point light source (shadows with penumbrae or sharp edges), and the light source from above or from below (Fig. 2).

Perceived motion was more likely when the shadow had a penumbra or when illumination was from above. The optimal shadow condition (fuzzy shadow below the square) replicated our initial observations, with all 15 observers reporting a perceived motion in depth on initial viewing. The worst shadow condition (sharp shadow above the square) showed the weakest motion induction effect, with only 7 out of 15 observers reporting the effect on initial viewing.

The kind of brain computation suggested by our findings resembles a process in which the visual system seeks a rational interpretation of the image sequence based on knowledge of how images could be formed from objects, their spatial relations, the illumination and viewpoint, together with prior assumptions about the nature of the world\(^1\). Theoretically, the visual interpretation is ambiguous. The kinematics of the shadow could be due to a light source moving, or to motion of the square itself. The strong apparent motion of the square in depth suggests that the visual system resolves this ambiguity by assuming that light sources are usually stationary. Previous studies have shown that the perception of shape assumes that illumination is from above\(^1\), and that shadows are dark\(^2\). Our results show that depth perception takes advantage of the fact that light sources are generally stationary and above, thereby obviating the need for the computational resources required to estimate light source position and motion precisely.

Daniel Kersten
Department of Psychology, University of Minnesota, Minneapolis, Minnesota 55455, USA

David C. Knill
Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA

Pascal Mamassian
Department of Psychology, New York University, New York, New York 10003, USA

Isabelle Bülthoff
Max Planck Institute for Biological Cybernetics, D-72076 Tübingen, Germany

References