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Many algorithms for deriving surface shape from shading require an estimate of the direction of illumination. This
paper presents a new estimator for illuminant direction, which also generates an estimate of the degree of surface
relief, that is measured by the variance of surface orientation (the partial derivatives of surface depth). Surfacesare
considered to be samples of a stochastic process representing depth as a function of position in the image plane. We
derive an estimator for illuminant tilt that is based only on some general assumptions about the process. The
assumptions are that the process is wide-sense stationary, strictly isotropic, and mean-square differentiable and
that the second partial derivatives of surface depth are locally independent of the first partial derivatives. We
develop an estimator of illuminant slant and degree of surface relief in two stages. In the first, we develop a general
format for an estimator based on the same assumptions that are used for the tilt estimator. The second stage is the
actual implementation of the estimator and requires the specification of a functional form for the local probability
distribution of surface orientations. This approach contrasts with previous ones, which begin their development
with an assumption of a particular distribution for surfaces. The approach has the advantage that it separates the
problems of surface modeling and light-source estimation, permiting one to easily implement specific estimators for
different surface models. We implement the illuminant slant estimator for surfaces that have a Gaussian distribu-
tion of surface orientations and show simulation results. Degraded performance in the presence of self-shadowing
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Estimating illuminant direction and degree of surface relief

is discussed.

1. INTRODUCTION

A primary goal of any visual system, biological or artificial, is
to extract information about the three-dimensional struc-
ture of the environment from a dynamic two-dimensional
image. This problem is one of inverse optics, in which the
goal is to invert the imaging function that maps a scene to
one or more images. The images are functions of scene
characteristics such as shape, reflectance, depth relations
between objects, illuminant geometry (number, position,
and types of illuminants), and camera parameters. In most
cases, information in the images that is useful for the deriva-
tion of ohe scene variable is coupled to other variables as
well. A good example is the relationship between the esti-
mation of illuminant direction and surface shape in the use
of shading information. Most models that are used to deter-
mine shape from shading require knowledge of the illumi-
nant direction.l3 The one model that does not* relies on a
too strong assumption of surface geometry, namely that all
surface points are umbilical (surface patches are locally
spherical). Current models for estimating illuminant direc-
tion depend on the assumption of a particular probability
distribution of surfaces. One would like, however, to have
an estimator that could be easily modified to fit different
distributions, which would effectively separate the problems
of surface modeling and light-source estimation. In this
paper, we derive the general format of an estimator that can
be implemented using any surface distribution that fits
some basic criteria.

The light energy reflected to the viewer from a surface,
with the simplifying assumption of a point light source and
matte surfaces, is given by the Lambertian shading equation

I=p\N-L), 0

where I is the luminance, p is the surface reflectance, A is the
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light energy flux incident on the surface, N is the surface-
normal vector at a point, and L is a unit vector in the direc-
tion of the light source.

In a coordinate system (x, v, z), where z is taken to be
positive in the direction of the viewer, we can represent N as
the vector (1, ny, n,)T, whose components are given by

—p

n.=———+— (2)
* Vo*+a®+1
—-q
n,=——->——, 3)
i’ Vpi+g®+1
n2=_._1__., (4)
Vo P+ +1
where
dz 0z
= — = . 5
p=- q 3y (5)

Note that n, = 0, which will always be the case for surface
points projected to the viewer. The illuminant vector L is
written as (I, [,, ). Expanding Eq. (1) for the shading
equation, we obtain

I=pMnl, +nl, +n.l,). 6)

Figure 1 summarizes the imaging geometry.
We can also write Eq. (1) as

I=p\ cosB, 7

where 8 is the angle between the surface normal and the
illuminant direction. Using this formulation, we find it
convenient to represent the surface normal and the illumi-
nant vector by their slants and tilts. The slant of a vector is
the angle made by the vector and the z axis. The tilt of a
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I=pANsL

I=pAcos

Fig. 1. Imaging geometry assumed for the discussion. All vectors
are represented in a three-dimensional coordinate system, in which
the z axis points toward the viewer. The x~y plane perpendlcular to
this direction is referred to as the image plane. Local surface orien-
tation is represented by a normal vector N. The unit vector L
points toward the light source. For matte surfaces, the percentage
of hght energy reflected to the viewer from a point is given by the
cosine of the angle 8 between N and L. Orthographic projection of
the surface to the image is assumed.

vector is its angle away from the horizontal in the image
plane. Surfaceslant and tilt are related to the normal vector
by

s = cos™(n,), 8)

T =tan"Y(ny/n,), (9)
and similarly for the illuminant direction

s, = cos1(1,), (10)

7= tan"'(L/L,). (11)

The problem of estimating illuminant direction is to find
the vector L from an image of a shaded surface or a collection
of shaded surfaces. Knowledge of the shapes of surfaces in
an image would greatly simplify the determination of illumi-
nant direction. This information is not generally available,
however, as knowledge of the illuminant direction is often
necessary for the initial determination of surface shape.
One may, however, use knowledge of the statistical structure
of surfaces in the estimation of L. If we model surfaces as
being samples of a stochastic process, then the statistical
structure of images of these surfaces will depend jointly on
the structure of the surfaces and the illuminant direction.
Using knowledge of the biasing effects of the illuminant on
image statistics, we can derive a good estimate of the illumi-
nant direction.

The estimators of Pentland® and Lee and Rosenfeld? rely
on the assumption that the statistical structure of surfaces
may be approximated by that of spheres. Both estimators
make use of the means of partial derivatives of image lumi-
nance 0I/dr; that are computed in different directions 4 in
the image. The simulations that were reported by the au-
thors deal only with spheres, ellipsoids, and, in Pentland’s
case, images of some naturally occurring, simply convex ob-
jects. The assumption of convexity, however, seems to be
overly restrictive for the surfaces that make up visual scenes.
Many surfaces will extend beyond the boundaries of images
and will be of mixed type, that is, will have both convex and
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concave regions, as well as hyperbolic, parabolic, and planar
regions. Neither of the estimators will work for surfaces
that are not predominantly convex. The distribution of 9N/
dry is symmetric around zero for such surfaces, so that E[N/
drg) = 0. From Eq. (6), we see that this distribution implies
that E[61/dr,] = 0, so that neither tilt estimator would work,
nor would Lee and Rosenfeld’s slant estimator. Figure 2
demonstrates clearly that humans are able to estimate, at
least coarsely, illuminant direction for images of surfaces
that are drawn from an ensemble for which E[9N/dr,] = 0.
Most people who look at this image have the correct impres-
sion of a light source coming from the upper-left-hand cor-
ner.

In the following sections, we derive an estimator for illu-
minant tilt and the general format of an estimator for illumi-
nant slant that are based only on some reasonable assump-
tions about the ensemble of surfaces that make up visual
scenes. Surfaces are considered to be samples of a two-
dimensional stochastic process that specifies surface depth
at points in the image plane. Derivation of the estimators
requires four assumptions about the surface process:

1. The process is wide-sense stationary; that is, the cor-
relation and mean functions of the process are invariant over
position in the image plane.

2. The process is strictly isotropic; that is, the probabili-
ty law of the process is invariant over rotations of the coordi-
nate system in which it is defined (see definition in Appen-
dix A).

3. The process is mean-square differentiable.?

4. The second-order partial derivatives at a point are
independent of the first-order partial derivatives at that
point; that is, the curvature of the surface is locally indepen-
dent of the orientation.

The last assumption may not be as constraining as it first
appears because the nth-order partial derivatives of a sta-
tionary process can be proven to be locally uncorrelated with

Fig. 2. Image of a smoothed fractal surface illuminated by a point
light source at 135° tilt and 30° slant (from the upper-left-hand
corner). The surface has a fractal dimension of 2.2 and has been
smoothed by low-pass filtering of the depth values.



David C. Knill

the lower-order derivatives (Proposition Al, Appendix A).
They are therefore independent for Gaussian surface pro-
cesses.

In order to avoid the necessity for a full specification of a
model of surface statistics, we use only local moments of
image luminance and its derivatives for the estimators. In
particular, we use the mean and variance of image luminance
and its derivatives computed in orthogonal directions. We
show that a good estimate of illuminant tilt is given by the
direction in which the variance of luminance change is great-
est. The interaction between the illuminant slant and the
structure of the surface process is more complex, and estima-
tion of illuminant slant necessitates the simultaneous esti-
mation of the degree of relief of surfaces, as measured by the
variance of the partial derivatives of surface depth. Two
statistics are needed, therefore, for the estimation of these
two parameters. We use the average mean-square contrast
of the image (luminance variance divided by the square of
the mean luminance) and the ratio of the variances of lumi-
nance change in two directions, one parallel to the estimated
illuminant tilt and one orthogonal to it. Actual implemen-
tation of the slant estimator requires only the selection of a
functional form for the local probability distribution of sur-
face orientation parameterized by its mean and variance
(e.g., Gaussian versus exponential).

Section 2 gives definitions of the variables used in this
paper. Sections 3 and 4 present derivations of the two
estimators. The derivations make use of some of the local
properties of the stochastic processes that could represent
surfaces. Proofs of these properties are given in Appendixes
AandB. Section 5 describes an implementation of the slant
estimator for surfaces with a Gaussian distribution of orien-
tations. Simulation results are given in Section 6. Proposi-
tions given in the appendixes are labeled according to the
appendix in which they can be found; e.g., Proposition A2 is
found in Appendix A.

2. DEFINITIONS

We define S(x, y) to be a stochastic process representing
surface depth on a two-dimensional lattice. S(x, y) is a
random function that is indexed by spatial position (x, y)

and can be viewed as a set of random variables arranged on-

the lattice. Such a stochastic process may be characterized
by the conditional probability densities that describe the
dependence of S(x1, y1) on S(xz, ¥2), where (x1, y1) and (x2,
ys) are different points on the lattice. Alternatively, the
process may be characterized by its summary statistics, such
as its mean and variance functions, which specify the mean
and variance of S(x, ) at each point on the lattice. Since we
have assumed that S(x, y) is wide-sense stationary, these
functions are constants that do not vary with spatial posi-
tion. Since we consider only the class of wide-sense station-
ary stochastic processes here, we will drop the index in our
notation, to indicate that the derived expectations are inde-
pendent of spatial position.

S is the model for those regions of surfaces in the environ-
ment that are projected to an image under orthographic
projection, with the lattice corresponding to the image
plane. We define stochastic processes for the partial deriva-
tives of S as
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p=%5, (12)
ox
- (19)
p-2.28 (14)
Q=3 =g§: (15)
2
Py=%§-=%=%=Qx. 16)

The surface-normal vectors are represented by a vector-
valued stochastic process

N=@m,n,n)7, 7
where

n, = i (18)

VRS
-Q
n=———, (19)
T PR Q@+
1

n =

@

Finally, we define processes for the local slant and tilt of
surfaces:

(20)

- -1 - -1 1
2 = cos”'(n,) = cos —-———‘/WTI’ (21)
T= tan"l(%) = tan‘l(%)~ (22)

3. ESTIMATING ILLUMINANT TILT

The means of luminance change in an image are, in general,
inappropriate for the estimation of illuminant tilt, as dis-
cussed in Section 1. The logical alternative is to use higher-
order moment functions (e.g., variance of luminance change)
for the estimation. Looking at Fig. 2, you may note that
luminance seems to change more sharply along the diagonal
that runs from the upper-left-hand corner of the image to
the lower-right-hand corner. This direction does, in fact,
correspond to the tilt of the illuminant used in generating
the image. The observation leads to the tilt estimator, as
stated formally in Proposition 1.

Proposition 1

Let S be a wide-sense stationary, strictly isotropic, mean-
square differentiable, two-dimensional stochastic process
that represents surface depths in the image plane. Further-
more, let the second-order partial derivatives of S be locally
independent of the first-order partial derivatives. Let I
represent the image onto which light reflected from S is
projected under orthographic projection. 1/dr; is the par-
tial derivative of I that is computed in a direction 8 in the
image. If the surface represented by S has Lambertian
reflectance and is illuminated by a point source at infinity,
the tilt of the illuminant is given by the angle 4 for which the
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variance of 8I/dr; is greatest. This is the angle 8, which
maximizes’

N 2 B[ (BL Y ]eos? LN in2
E[(aro) ] E[(0x> ]cos 0+ E[(ay) ]sm ]
dI\/aI\] .
+ 2E[(-£>(5)]sm 0 cosf, (23)

_i_ 2E[01/ox)@V/ay)]
E[(31/6x)"] — E[(31/3y)?]

and is given by

H=0= % tan (24)

Proof

For convenience, we will use a coordinate system that is
aligned with the illuminant tilt for the proof. In this coordi-
nate system, the illuminant vector is given by

L=(,0,0)" (25)

It is necessary to show that E[(91/dry)?] is greatest for = 0in
this coordinate system. 1 is given by
I=pAn,l, +n,l,), (26)

and the partial derivative, computed along a direction 6, is

given by
ol _ on, omn,
x- px[( - )zx 4 ( = )z] @)

The function that we want to maximize is the variance

L A I T A
E[(aro)] ")‘E[(ara I+ , l, (28)

The cross term E[(dn,/0rg)(dn,/dr,)] goes to zero (Proposi-
tion AG6), so we have

AT AAET AT =

Forisotropic surfaces, n, is independent of the orientation of
the coordinate system (Proposition A4), so the second term
is constant for all #’s, and we need only maximize the func-

tion
2
£(6) = p®\%,°E [(%?) :| (30)
}

Writing this in terms of the partial derivatives on,/dx and
on,/dy, we get

on on\?
= 2327 2 *+sing—1 I.
f@) = p®N21, E[(cos ] o + sin g 8y) ] (31)

The cross term E[(dn,/dx)(n./dy)] goes to zero (Proposition
A6), which leaves, with some simpification,

f6) = pz)\2lx2{cosz HE[(%Y] + sin? w[(%)z]} (32)

Taking the derivative and setting it equal to zero, we get the
relation

on,\2 on,\2
sinf cosOE|[—) | = sinf cos0FE (— . (33)
ox dy
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This has the solutions § = 0, § = /2 for cases in which
E[(6mn,/0x)?] # E[(dn./dy)?]. Substituting back into Eq.
(32) for f(6), we have for 6 = 0

2
£(0) = ,ﬁ\%}E[(%) ] (34)
and for § = =/2
3 2

Except for the degenerate case of a planar surface, one can
easily show that E[(dn,/dx)?] > E[(dn./dy)?] [Appendix B,
Egs. (B7) and (B8)]. ¢ = 0 is, therefore, a maximum of the
function, while # = 7/2 is a minimum of the function. Asone
would expect, the derivative computed along a direction
orthogonal to the tilt of the illuminant has the minimal
variance.
The function to be maximized in estimating the tilt is

N _ o (2 s g4 2L sin g
E[(a_ra) ] = E[(ax cos 8 + 3 sin 0) :I,
N 2 (2 os? 0 + 2] (2 i
E[(&,,) ] E[(ax) ]cos ¢+ E[(ay) ]sm 0
+ 2E[(ﬂ)(-"-l-)]sin 6 cos 6. (36)
ox J\ 8y

Taking the derivative of Eqs. (36) with respect to 6 and
setting it equal to zero, we obtain

sinfcosf _ _ E[(31/3x)(31/3y)] ,
cos?f —sin?f  E[(81/dx)?] — E[(31/3y)?]
Lionoi= E[0l/ox)(31/dy)]
2 E[(61/3x)?] — E[(81/3y)?]
=Ly 2E(@l/on)@L/8y)]
2" E[(31/62)%] — E[(81/9y)*] @7

QE.D.
The illuminant tilt is given by the solution to Eqgs. (37),
which maximizes Eqs. (36).

4. ESTIMATING ILLUMINANT SLANT AND
DEGREE OF RELIEF

Estimation of the illuminant slant poses a more severe prob-
lem than the estimation of the tilt because the illuminant
slant is confounded with the statistical properties of surfaces
in all local image statistics. Luminance contrast is a good
example of this problem because it increases with increases
in illuminant slant or with increases in the degree of relief of
surfaces. Figure 3 shows two images that have approxi-
mately equal luminance contrast, despite being generated
with light sources at different slants. The illuminant slant
is greater in one image, but the degree of relief in the other is
greater (which makes the hills and valleys more peaked).
The differences in illuminant slant and degree of relief con-
spire to keep the contrast between the images equal. Be-
cause of the confound between the illuminant slant and the
statistical properties of the surface, the best that we can do is
to use image statistics that can be expressed as functions of
only one parameter of the surface process. This will leave
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Fig. 3. a, Smoothed fractal surface illuminated by a point light
source at 135° tilt and 30° slant. b, This image shows the same
surface after being stretched along the viewing direction (2 axis) (the

depths were scaled by a factor of 2) and illuminated by a source ata .

shallower slant (15°). The differences in the degree of relief in the
surfaces and in the slant of the illuminant conspire to keep the
average contrasts in the two images approximately equal.

two unknowns that need to be solved for, the value of the
parameter and the illuminant slant. The example above
suggests using a parameter that corresponds to the degree of
relief of surfaces in a scene. Looking at Fig. 3, see if you can
tell in which picture the sun is higher in the sky and in which
the degree of surface relief is greater. Most people are able
to categorize the images correctly, suggesting that we are
able to disentangle the effects of illuminant slant and sur-
face relief on the image statistics.

Pentland uses a strategy similar to the one that was just
described. He models surfaces as spheres and relates the
mean and variance of luminance change in an image to the
illuminant slant and the radius of the projected sphere. We
would, however, like to avoid specifying an a priori model of
surfaces in the development of an estimator.

In this section, we derive two image statistics that can be
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expressed as functions of the illuminant slant and the statis-
tical moments of the z component of surface normals, E[n.f]
(i > 0). The moments, E[n,], can be related to the parame-
ters that specify the local distribution of surface orientation,
fo(p). (The distributions of P and Q are equivalent for
isotropic surface processes.) If the distribution is param-
eterized by its mean and variance, the statistics will reduce
to functions of the illuminant slant and the variance of
surface orientation, since the means of P and Q are known to
be zero [Appendix A, Eq. (A2)]. The variance of P and Q
provides a measure of the degree of relief in a surface. Note
that only the form of the local distribution of P needs to be
specified. It is not necessary to model the entire multivari-
ate distribution of the surface process (no assumptions need
be made, for example, about the correlational structure of
surfaces).

The most obvious statistics to use are the mean and vari-
ance of image luminance. These parameters, however, de-
pend on p and . Luminance contrast, on the other hand,
does not. It is defined as the variation of image luminance
around its mean, normalized by the square of the mean, and
is given by

_ E[a-Em?
E®@)?
21 _ 2
_EI¥] - EIP, )
E[1)?
Expanding E[I}, we obtain
E[] = E[pA(ln, + I, + Ln,)],
E[1] = pML,E[n,] + [,E[n,] + LE[n,]}. (39)
As E[n,] and E[n,] both equal zero, we have
E[I] = pALE[n,]. (40)
For E[I?], we have

E[1?] = E[p?®»*(l,n, + Lo, + ,n,)’],

E[1?}] = p*(,E[n,”] + 1,’En,’] + 1.E[n,?]

+ 2Ll Enmn]+ 2l L,E[nm,] + 2L E[nn,]}
(41)

The cross terms go to zero (Proposition A5), so we have
E[1?] = p2%l 2E[n 7] + lyZE[nyZ] + 1,2E[n,]}. (42)

n, and n, may be rewritten in terms of n, and the tilt T as

n,=.1-n2cosT, (43)
n,=,1-n’sinT, (44)

and since n, and T are independent for isotropic surface
processes (Proposition A4), we can rewrite Eq. (42) as

E[1?] = o224, 2E[1 — n,%]|E[cos® T] + | ’E[1 — n,’]
X E[sin® T] + [,2E[n,%}. (45)

For isotropic surface processes, T is uniformly distributed
over the interval [0-2x) (Proposition A4), so that E[sin? T] =
Elcos2T] = 1/2. Substituting into Eq. (45) and simplifying,
we obtain
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E[1?] = %p® %1 — 1,2 + (31,2 - 1)E[n,2}. (46)
Substituting Eqs. (40) and (48) into Eqgs. (38), we obtain for
luminance contrast

_1-12+ (32~ 1)E[n7

47
21,2E[n,)? “n
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G-t

y

(54)

E[(Z—’;-)z] - E[(‘Z‘V )2] = 2E[n,] - 2E[n,S)E[P.2]. (55)

Substituting into Eq. (52), we get

3 5E(n,?] + 2E[n,*] + 5E[n,] — L,Y5E[n,?| — 6E[n,*] + 13E[n,°]}

(56)

3E[n,?] — 2E[n,] + 3E[n,%] — 1. %3E[n,% — 10E[n,"] + 11E[n,%]}

This relation provides the first statistic for the estimator.

The second statistic that is to be used in the estimator uses
the partial derivatives of image luminance. It is based on
the observation that the variance of the derivative of lumi-
nance is greatest when computed along a direction parallel
to the light-source tilt and is minimal when computed along
an orthogonal direction (Section 3, Proposition 1). The
ratio of the two variances depends only on [, and some of the
moments of n,. Our second statistic, then, is

_ B[0V/o2)*]
E[(61/3y)?)

where x is taken to be in the direction of the illuminant tilt
and y is in the orthogonal direction. The derivation of R is
rather long and involves some cumbersome algebra, so only
the main steps will be described here. The remaining de-
tails are given in Appendix B.

In the coordinate system that we have defined, the illumi-
nant vector is given by L = (I, 0, )7, and the derivative of
luminance computed in an arbitrary direction 8 is given by

9. ad
o _ ,,A<, on, &). (49)
I}

(48)

The variance of 81/9r,, given in Eq. (28), is

AE AR AR -

Replacing I, with (1 — 1,2), we get

()]t woe| )] 5] G2 T

(51)

Substituting Eq. (51) into Eq. (48), we obtain

_ (1= L)E[(0n,/0x)?] + 1,2E[(ém, /ax)2]
(1= L)E[(0n,/8y)?] + 1,2E[(6m,/3y)%]

(52)

The only terms that differ between the numerator and the .

denominator are E[(dn,/dx)?] and E[(3n,/dy)?]. Note that
E[(n,/0x)?] = E[(6n./dy)?]. Expressions for the expecta-
tions in Eq. (562) are derived in Appendix B and summarized
below:

E[(%)Z] = {Z— Elnf + %E[nf] + %E[nzﬂ]}E[pj],
(53)

This relation provides the second statistic for the estimator.

All that is required for implementation of the estimator is
a specification of the local distributions of the partial-deriv-
ative processes, P and Q. The moments of n, must then be
expressed as functions of the standard deviation of P and Q,
op = 0gt

En,] = g(a,). (57)

Substitution of the functions g;(s;) for the E[n,] terms in
Eqgs. (47) and (56) gives equations that are functions of the
two unknowns, I, and ¢,. Measurements of R and C from a
given image may then be used in the simultaneous solution
of these equations to derive estimates of I, and o,.

5. IMPLEMENTATION

This section describes an implementation of the slant esti-
mator for surfaces whose depths have a Gaussian distribu-
tion (the tilt estimator is independent of the form of the
distribution). The first step in the implementation is to
derive the probability distribution of the z component of
surface normals n,. The second step is to derive the func-
tions g;(ap) for the ith moments of n,.
Define a new random process R as

R=\P?+ Q% (58)

R is the length of the gradient vector of S. P and Q are both
Gaussian with equal variance o,%, and R can be shown to
have a Rayleigh distribution

fr() =pR=r) = ﬁ exp[-r%/(20,)]
p

(r=0). (59)

The z component of the surface normal is given by

n,=gR) = —. (60)

VR?+1

n, is a strictly monotonic, decreasing function of R, so that
its probability distribution is related to fr(r) by

- dg'(n,)
fa,(n,) = frlg™'(n,)] an |’ (61)
The resulting distribution is given by
1/(20,%
f,,,(n,)=————exp[ 5 Z” ] exp[~1/@n%0,)]  (0<n,<1).
opn,
(62)
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We require functional relations between the first, second,
fourth, and sixth moments of n, and o,. These relations are
given below. Appendix C contains further details of their
derivation:

- 2w 2 — 1 s
Bln = 42" expl1/(2e,)] 1 erf( ﬁ%) 63)
o exp[1/(20,%)] 1
E[nz ] 20p2 El (26p2>’ (64)
Efn,] = —— (1 - Eln.2), (65)
20,
1
E[n,f] = 4:? (1 - E[n*). (66)

In the equations above, erf( ) is the standard error function
and E;( ) is the first-order exponential integral (see Appen-
dix C for definitions). Note that the fourth and sixth mo-
ments are given as recurrence relations. This simplifies the
computations somewhat. Substitution of the moment func-
tions into Eqs. (47) and (56) completes the implementation
of the estimator. In the computer simulations, the special
functions were replaced by standard polynomial approxima-
tions.8

6. SIMULATIONS

We applied the estimator to images of two different types of
surface, randomly generated, smoothed fractal surfaces and
spheres. A fractal model was used for one set of test surfaces
because it provided a mechanism for the random generation
of naturalistic surfaces. We varied the degree of relief in
"these surfaces by scaling the depths along the viewer axis.
Spheres were used as a second test surface for two reasons.
First, they are prototypical examples of isotropic surfaces,
and as such they provide a test of the best possible perform-
ance of the tilt estimator. Second, they are atypical exam-
ples of surfaces drawn from a Gaussian ensemble, so that
they provide a test of the generalizability of the implementa-
tion of the slant estimator. Examples of the test images that
were used are shown in Fig. 4.

The size of the images that were used for the simulations
was 256 X 256 pixels. The partial derivatives of luminance
were calculated using a seven-point discrete derivative filter,
the kernel of which is given by

D = (—0.0577, 0.215, —0.804, 0, 0.804, —0.215, 0.0577)".
(67)

This operation gave better results than a simple discrete
differencing operation. For the images of smoothed fractal
surfaces, the required image statistics were calculated by
using the entire image; but for the images of the spheres,
only points within the occluding contour of the spheres were
used. This was done to avoid the biasing effects of the
relatively large values calculated for the partial derivatives
at the spheres’ boundaries.

Iluminant tilt was estimated by using Eq. (24). For the
estimation of illuminant slant and orientation variance, we
define an error functional that incorporates the squared
differences between measured and computed values of C
and R. The error functional is given by
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Fig. 4. Images used as examples in the simulations. a, The first
test image is a smoothed fractal surface. b, The second testimage,a
sphere, is shown. Both images are generated by using a point light
source at 135° tilt and 30° slant.

EQ,5,) =[C,— CU, 61 + [R, — R(,, 8,)1%  (68)

where C,, and R, are the values of C and R that are measured
from an image and C(,, 6,) and R(l;, &,,) are the values that
are computed by using Egs. (47), (56), and (63)-(66). Simu-
lations indicated that this error functional was convex for
images of the types of surfaces used here; therefore we used a
simple coarse-to-fine-resolution search of the (I, sp) param-
eter space to find the minimum of the error function. The
estimated illuminant slant is calculated from [, using Eq. (8).

The first two simulations were designed to analyze the
performance of the tilt estimator. The third and fourth
simulations provided data on the performance of the slant
and surface-relief estimator.

Simulation 1
In the first simulation, the illuminant slant was held fixed at
30°, and seven different tilts between 0° and 90° were used
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Table 1. Tilt Estimates for Smoothed Fractal
Surfaces: Simulation 1¢

Illuminant Tilt (7;) Estimated Tilt (7 £ 0;,) N
0.0 0.70 % 4.52 40

15.0 16.05 + 5.80 40

30.0 30.60 + 4.53 40

45.0 44.85 £ 5.65 40

60.0 60.50 =+ 6.56 40

75.0 75.72 £ 5.71 40

90.0 88.55 % 4.94 40

¢ Estimated illuminant tilt for images of smoothed fractal surfaces illumi-
nated from seven different tilts and a slant of 30°.
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Fig. 5. Plot of the average estimated illuminant tilt generated by
the tilt estimator, when applied to images of smoothed fractal sur-
faces, versus the actual illuminant tilt. The error bars represent the
standard deviation of the estimates (Table 2).

Table 2. Tilt Estimates for Spheres: Simulation 1¢

Illuminant Tilt (7;) Estimated Tilt (7)) N
0.0 1.0 1

15.0 15.9 1

30.0 315 1

45.0 45.0 1

60.0 58.5 1

75.0 74.1 1

90.0 89.0 1

@ Estimated illuminant tilt for images of spheres illuminated from seven
different tilts and a slant of 30°.

to generate test images of smoothed fractal surfaces and
spheres. Table 1 summarizes the performance of the tilt
estimator for the images of randomly generated fractal sur-
faces. The standard deviation of the tilt estimates is ap-
proximately 5°, which indicates the accuracy of the estima-
tor. Figure 5 shows a plot of this data, with the standard
deviation of the tilt estimates shown as error bars. Table 2
shows the tilt estimates for the images of spheres. The
estimator is near perfect for these images, with errors rang-
ing from 0° at a tilt of 45° to 1.5° at tilts of 30° and 60°. This
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performance should be expected, however, as spheres are
prototypical examples of isotropic surfaces.

The estimator shows a small bias toward 45° for the im-
ages of spheres. This bias is probably due to the effect of
discretization on the calculation of the partial derivatives at
the boundary of the shadowed region of the sphere. Nosuch
apparent bias can be seen in the performance of the estima-
tor for the images of fractal surfaces.

Simulation 2

The second simulation was designed to study the effect of
illuminant slant on the performance of the tilt estimator.
Test images for this simulation were generated using a fixed
illuminant tilt of 45° and nine different illuminant slants
that varied between 0° and 40° (illuminant tilt is actually
indeterminate for a slant of 0°).

The performance of the estimator on the images of
smoothed fractal surfaces was highly dependent on illumi-
nant slant (Table 3). Figure 6 is a plot of the standard
deviation of the tilt estimate as a function of illuminant

Table 3. Tilt Estimates for Smoothed Fractal
Surfaces: Simulation 2¢

Estimated Tilt (7; + 03)

Illuminant Slant (s;) 71 =45.0 N
0.0 48.35 3 51.89 40

5.0 42.77 + 44.62 40

10.0 47.05 £ 23.89 40

15.0 43.62 £ 11.78 40

20.0 40.85 £ 12.23 40

25.0 43.47 £ 6.51 40

30.0 43.97 £ 5.61 40

35.0 44,72 4 4.22 40

40.0 4415 £ 4.21 40

o Estimated illuminant tilt for images of smoothed fractal surfaces illumi-
nated from a fixed tilt of 45° and nine different slants.

60 A

50

40 4
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Std. Dev. of Tilt Estimate

0 LIRS B | T T L L SR |

— —
-5 0 5 10 15 20 25 30 35 40 45
llluminant Slant

Fig. 6, Plot of the standard deviation of estimated illuminant tilt
generated by the tilt estimator, when applied to images of smoothed
fractal surfaces, versus the illuminant slant used in generating the
images.
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as a function of the direction in which the derivative is computed for
images of smoothed fractal surfaces. The images are generated by
using a light source at a tilt of 45° and slants of 0°, 20°, and 40°.
These data reflect an ensemble average, and, as expected, the peak
of the function is found at 45° (see text for discussion). b, Plot of
the sample variance as a function of direction for images of a sample
fractal surface. The peaks of the functions are shifted away from
45° owing to random variations of the surface. Note that the accu-
racy of the peak is highest for the images generated with larger
slants.

slant. It drops from a value of 51.9 for 0° slant to an asymp-
totic lower value of 4.0 for 40° slant. The decrease in error
with increasing illuminant slant results from the increasing
likelihood that anisotropies in the luminance distribution
that were caused by a slanted illuminant outweigh those
anisotropies that were caused by random variation in sample
surfaces (e.g., a given surface may have a large ridge running
in one direction). This decrease in error is illustrated in Fig.
7, which shows plots of E[(81/0r;)?] as a function of § for three
classes of image. The classes correspond to images of
smoothed fractal surfaces illuminated by light sources with
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slants of 0°, 20°, and 40°. The peakedness of the variance
function indicates the sensitivity of the estimator to random
variations of a surface. When the illuminant slant is 0°, the
function is flat, which reflects the fact that the tilt is indeter-
minate. In this case, the estimated tilt is completely deter-
mined by the random surface variations. As the slant is
increased, the peak of the function becomes more pro-
nounced, and the estimator becomes less sensitive to ran-
dom surface variations.

Table 4 shows that the tilt estimator is perfect for each of
the images of spheres that are used in this simulation.

Simulation 3
We applied the illuminant slant and surface-relief estimator
to images of smoothed fractal surfaces that were generated
using seven different illuminant slants between 0° and 30°.
The tilt of the illuminant was held fixed at 45°, but an
estimate of tilt that was obtained from the tilt estimator was
used in place of the actual tilt in the estimation of slant and
degree of relief. Images of 100 different surfaces were gen-
erated for each slant. The sample standard deviation of
surface orientation, o,,, was distributed fairly uniformly be-
tween 0.20 and 0.62.

Table 5 summarizes the performance of the estimator for
each of the seven illuminant slants. The bias in the slant
estimate drops from 6.24° to 0.68° as the illuminant slant

Table 4. Tilt Estimates for Spheres: Simulation 2¢

a, Plot of the variance of the partial derivative of luminance

Estimated Tilt (#7)
Iuminant Slant (s;) 1 = 45.0 N

0.0 — 1

5.0 45.0 1
10.0 45.0 1
15.0 45.0 1
20.0 45.0 1
25.0 45.0 1
30.0 45.0 1
35.0 45.0 1
40.0 45.0 1

¢ Estimated illuminant tilt for images of spheres illuminated from a fixed
tilt of 45° and nine different slants.

Table 5. Tilt Estimates for Smoothed Fractal

Surfaces: Simulation 3¢
Error in Estimated
Illuminant Slant  Estimated Slant Degree of Relief
(s1) (81 % a3) [(85 = op)?] N
0.0 6.24 + 3.58 0.0032 100
5.0 7.25 £ 3.69 0.0034 100
10.0 11.46 % 3.30 0.0021 100
15.0 16.40 + 3.31 0.0017 100
20.0 21.60 + 3.11 0.0021 100
25.0 26.13 £ 3.26 0.0017 100
30.0 30.68 + 3.28 0.0016 100

a Estimated illuminant slant and the error in the estimated degree of sur-
face relief for images of smoothed fractal surfaces illuminated from a fixed tilt
of 45° and seven different slants. The third column lists the average error
between the sample standard deviation of surface orientation for a surface
and the estimated standard deviation.
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Fig.8. Plot of the average estimated illuminant slant generated by
the slant and surface-relief estimator, when applied to images of
smoothed fractal surfaces, versus the actual illuminant slant. The
error bars represent the standard deviation of the estimates (Table
5). The ideal performance is shown as a dotted line.
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Fig.9. Scatter plot of the estimated standard deviation of P and Q
(6n) generated by the slant and surface-relief estimator, when ap-
plied to images of smoothed fractal surfaces, versus the actual stan-
dard deviation (¢,). The ideal performance is shown as a solid line.

increases from 0° to 30°. The standard deviation of the
estimates remains essentially constant around 3.5° for each
of the illuminant slants. These data are plotted in Fig. 8.
The average mean-squared error in the estimate of o, de-
creases from 0.0032 at 0° slant to 0.0016 at 30° slant, which
shows a small improvement in the accuracy of the estimate
of degree of surface relief with increased illuminant slant.
Figure 9 shows a scatter plot of the estimated values of o,
versus the actual values for all 700 images tested. Note that
the apparent slope of the plot is somewhat less than 1, which
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indicates that the estimator is positively biased for surfaces
with ¢, < 0.45 and negatively biased for surfaces with o, >
0.45.

Simulation 4

In the last simulation, we applied the estimator to images of
spheres that were illuminated from the same seven slants
that were used in Simulation 8. The tilt of the illuminant
was held fixed at 45°. Again, we used the estimated tilt for
the simulation; however, as shown in Table 4, this estimate
was equivalent to the real tilt. Table 6 summarizes the
results of this simulation. The estimator overestimates the
illuminant slant in all cases, with the error increasing from
6.25° at 0° slant to 13.76° at 30° slant. The estimator under-
estimates the value of ¢,,, which should be 1.81, with an error
that increases from —0.5 at 0° slant to —1.22 at 30° slant.

7. DISCUSSION

The estimators show a number of regular properties in their
performance. The accuracy of the tilt estimate is, in gener-
al, a function of the slant of the illuminant; accuracy im-
proves with increasing illuminant slant. As described
above, this improvement is a direct result of the estimator’s
dependence on the isotropy of the projected surface. It can
be tricked by anisotropies in the luminance distribution that
are caused by random anisotropies in a surface. The sensi-
tivity of the estimator to these random variations decreases
with increasing illuminant slant, which leads to improved
performance in these conditions. The analysis illustrated in
Fig. 7 can be extended to include noise in the imaging sys-
tem. As with its sensitivity to random surface variations,
the estimator’s sensitivity to noise decreases with increasing
illuminant slant. We emphasize the point that the tilt esti-
mator is based on a minimal set of assumptions about im-
aged surfaces. Further improvement of the estimator would
require the extraction of some, possibly very general, shape
information from the image.

The slant and surface-relief estimator, as it was imple-
mented for Gaussian surfaces, performs well on images of
smoothed fractal surfaces; however, it does not seem to gen-
eralize well to images of spheres. Though this problem is
partially due to the innapropriateness of the Gaussian distri-
bution for modeling spherical surfaces, it is primarily due to
the pervasive presence of self-shadowing in the images of the

Table 6. Tilt Estimates for Spheres: Simulation 4¢
Illuminant Slant Estimated Slant Estimated Degree of Relief

(s) (81) (6p) 0p = 1.81 N
0.0 6.25 1.31 1
5.0 8.77 1.25 1
10.0 16.86 1.03 1
15.0 23.96 0.89 1
20.0 30.54 0.77 1
25.0 37.19 0.67 1
30.0 43.76 0.59 1

@ Egtimated illuminant slant and degree of surface relief for images of
spheres illuminated from a fixed tilt of 45° and seven different slants. The
third column lists the estimated standard deviation of surface orientation,
which is to be compared with the real standard deviation of 1.81.
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spheres. The effect of self-shadowing is clearly seen in the
pattern of results in Table 6. As illuminant slant increases,
putting more of the sphere in shadow, the estimator error
increases. The effect of self-shadowing was not evident in
the results from the simulations with smoothed fractal sur-
faces, because shadows appeared only in images of those
surfaces with the greatest degree of relief, and then only
covered a small proportion of an image.

Self-shadowing is probably the single largest problem fac-
ing an estimator that makes use of global image statistics.
Shadows bias the sample statistics, particularly at sharp
boundaries, where the abnormally large derivatives domi-
nate the calculated expectations. It is hard to see a way to
deal with this problem efficiently when attempting to use
only global image statistics for the estimator. One could, of
course, attempt to detect shadows before applying the esti-
mator and include only those regions of the image that are
not in shadow in the statistics. Even if this were feasible, it
would introduce a bias into the sampling, which would give
preference to regions in the image that correspond to regions
of the surface that face the illuminant.

The problem seems to contradict our intuitions about
human perception because shadows actually seem to help us
in estimating illuminant direction. A full account of human
perception of illuminant direction must not only avoid the
problems that are posed by the presence of shadows in im-
ages but actually make use of the information available in
the shadows.

8. SUMMARY

Previous models for estimating illuminant direction are
based on the limiting assumption that the distribution of
surface orientations in an image match those of a sphere.
We derive an estimator for illuminant tilt that is based on a
minimal set of assumptions that do not include the form of
the distribution of surface orientations. We also develop a
general format for an estimator of illuminant slant and de-
gree of surface relief that is based on the same assumptions.
Actual implementation of the slant and surface-relief esti-
mator requires the specification of the form of the distribu-
tion of surface orientations.

APPENDIX A

If a two-dimensional stochastic process is mean-square dif-
ferentiable, the mean and correlation functions of the mean-
square partial derivatives are simply related to those of the
original process. In this appendix, we present a summary of
these relations and use them to prove some properties of the
local correlations between a process and its mean-square
partial derivatives and between the partial derivatives
themselves. We will also prove some properties of the tilt
and slant of S and of the process’s normal vectors and their
partial derivatives. These preliminaries are necessary for
the derivation of the illuminant tilt and slant estimators.
Let S be a two-dimensional, wide-sense stationary sto-
chastic process. We can write its correlation function as a
function of the vector distance between points (x, y):

Rs(x’ y) = E[S(x) y)s(o: 0)] = E[S(xo + X, yO + y)S(xO’ yo)]-
(A1)
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Let us assume that S is twice mean-square differentiable, so
that we can define processes for its partial derivatives. Us-
ing the notation introduced in Section 2 of this paper, these
processes are P, Q, P., P,, Q;, and Q,(P, = Q,). Derivation
of the mean and correlation functions of the partial-deriva-
tive processes of S is a straightforward extension of the
derivations for one-dimensional processes (see Ref. 9), and
only the final results will be presented here.
The means of the partial-derivative processes are zero:

E[P] = E[Q] = E[P,] = E[P,] = E[Q,] = E[Q,] =0. (A2)

The correlation functions are obtained by appropriate dif-
ferentiation of the correlation function of S:

Ryte) = = L R, (43)
62

Rq(x.’ y) == a—yz Rs(xy y), (A4)
64

Rpx(x> y) = _st(x» y)» (A5)
ox
34

R, (x,) = o R(x,y), (A6)

64
pr(x: y) = qu(x’ y) = WRs(x’ y)° (A7)

The cross-correlation functions between S and its partial-
derivative processes and between the partial-derivative pro-
cesses themselves are given by

R ) = o= R, ), (A8)
Ry ,(%,5) =~ Ry(x,3), (A9)
dy
Rpy(5,9) = — -5 Ry, ), (A10)
dxdy
63
R, (%,y) = = — R(x, ), (A11)
ox
63
quy(x’ y) == a_‘yg Rs(x’ y)v (A12)
63
Ry, (%, y) = — % Ry(x,y), (A13)
83
Ry, (x,y) = Py R (x,y), (A14)
64
R, , (x,y) = W Ry(x, ), (A15)
64
Ry o (x,¥) = PP R(x, y). (A16)

We now consider the local correlations between the pro-
cess S and its partial-derivative processes, that is, the corre-
lations between the process and its partial derivatives that
are evaluated at the same point. In doing so, we will limit
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consideration to processes whose probability laws are invari-
ant over rotations of the coordinate systems in which they
are defined. We refer to this property of the processes as
strict isotropy, a formal definition of which is given below.

Definition

A two-dimensional stochastic process S is strictly isotropic

if, for any positions (x1, y1), ..., (xz, yx) and allk = 1, 2, 3,
.., its kth-order density functions satisfy the condition

filsGy, ¥1)s o ooy 8CGe ¥ = fils(x/s, 1), - ooy 820 YR,

(A17)

where
x/;=x;cos 0+ y;sin g, (A18)
y';=—x;sin 6 + y; cos § (A19)

foralld,0 <0 <2r,andalli,1 <i <k

A wide-sense stationary process S is locally uncorrelated
with its mean-square partial-derivative processes. If S is
also strictly isotropic, then the partial-derivative processes
are themselves locally uncorrelated. These two facts are
stated and proved in the next two propositions.

Proposition A1

Let S be a wide-sense stationary, two-dimensional stochastic
process. Let S be twice mean-square differentiable. The
first mean-square partial-derivative processes are uncorre-
lated with the process S at the point at which they are
evaluated. The first partial-derivative processes are uncor-
related with their derivative processes, the second mean-
square partial derivatives of S, when evaluated at the same
point. This gives the following relations:

E[SP] = R,,(0,0) =0, (A20)
E[SQ] = R,,(0,0) =0, (A21)
E[PP,]=R,,(0,0)=0, (A22)
E[PP,] = R,, (0,0) =0, (A23)
E[QQ,] =R, (0,0) =0, (A24)
E[QQ,] = Ry, (0,0) =0, (A25)

Proof
For a wide-sense stationary process, we have from Eq. (A8)

(i)
R, (x,y) = ™ R,(x,¥).
Because it is wide-sense stationary, the correlation function
of S obeys the relation
R,(x,y) = Ry(—x, y).

Since R,(x, v) is differentiable, this relation implies that

9
ox

The other relations follow immediately, since the partial-

RSP(O, 0) = Rs(x: y)|x=0,y=0 =0.
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derivative processes of a wide-sense stationary process are
themselves wide-sense stationary.
Q.E.D.

Proposition A2

Let S be a wide-sense stationary, strictly isotropic, two-
dimensional, stochastic process. Let S be twice mean-
square differentiable. The first mean-square partial-deriv-
ative processes, P and Q, when evaluated at the same point,
are uncorrelated. The second directional derivatives, P,
and Q,, and the second mixed derivative, P, = Q., when
evaluated at the same point, are uncorrelated. This gives
the following relations:

E[PQ] = R,,,(0,0) =0, (A26)

E[P.P]=E[P,Q]=R,, (0,0)=0, (A27)

E[Q.Q,] = E[P,Q,] = R, (0,0) =0. (A28)
Proof

We will show the proof only for the first relation, as all the
proofs follow exactly the same form. Itis convenient for the
proof to make use of the power spectrum of S. The power
spectrum is given by the Fourier transform F(f,, f,) of the
covariance function, where f; and f, are the two-dimensional
frequency components. We have for the covariance func-
tion

R (x,y) = f i ] " F(f., £, expli2nf x)exp(2nf,y)df df,.

- J—wm

The cross correlation between P and Q is given by

_ 9
qu(xv y) - axay Rs(x’ y),

so we have
2 ) ©
qu(x, y)=-— a:ay j_m ]_m Fy(f, fy)exp(iz"rfxx)
X exp(i2nf,y)df.df,,
R0~ [ [* LG e,

This is the center of mass of the power spectrum, Fy(f;, fy).
Since S is isotropic, its power spectrum is radially symmetric
and has its center of mass at 0; therefore

R,,(0,0) = 0.

Carrying through the same calculation for the other cross
correlations, we always obtain odd powers of f, and f, in the
integral term, so that the integral equals 0 for these as well.
Q.E.D.

We can derive an invariant relationship between the vari-
ance of the second directional derivatives and the second
mixed derivatives of wide-sense stationary, isotropic pro-
cesses. The ratio of the variance of any second directional
derivative to the second mixed derivative is equivalently 3.
This is stated formally in Proposition A3.
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Proposition A3

Let S be a wide-sense stationary, strictly isotropic, two-
dimensional, stochastic process. Let S be twice mean-
square differentiable. The variances of the second mean-
square partial-derivative processes are related by

E[P,’] = E[Q,7] = 3E[P,’] = 3E[Q,”].

Proof

As in the proof of Proposition B2, we will derive terms for the
correlation functions of the second partial-derivative pro-
cesses that are evaluated at x = 0, y = 0 by using the power
spectrum of S. For P,, we have

¢
B, (x,3) =~ Ryl 7).

Writing R(x, y) as the inverse Fourier transform of the
power spectrum Fi(f;, f,), we have

4 © ©
Ro () =2 [ " B fexptizn,)
X exp(i2«f,y) df, df,,
R, (x,y) = J i f i 167*f,*F(f,, f,)exp(i2wf,x)

X exp(i2«f,y) df, df,.

The variance of P, is given by
E[P,?] = R, (0,0) = f f 167, 4F,(f,, £,)dff,,

The variances of the other second partial-derivative process-
es may be expressed in the same way, which gives

E[Qyzl =.R‘Iy(0’ 0) = j ]_w 161&'4 y4F (fx’ fy)df df

-

©

E[P,2] = E[Q,] =R, (0,0)
- f f 167, %, 2 (. £,)df.dF,.

Converting to polar coordinates, we get for the variances

2 (o
R, (0,0) = / j 16745 cos* 0 F,(£,)df,do
0 0
2
=[ cost 8 df f 167457, (£)df,
0
27
J 167457, (£)df.,
0

R, (0,0) = ] f 1674 £.5 sin* 0 F(£)df,.46
j sin* 9 do j 1674 5F,(£)df,
3

oF 4¢5
4j 1674 5F.(£)df.,
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2r (o
R, (0,0) = [0 L 167475 sin? 0 cos? 0 F,(£,)df,do

%
=[ sin? 0 cos® § dﬂf 167*.5F,(f.)df.
o

- ] 16xf.5F,(£)df..
£ s

The variances differ only in the multiplicative constant be-
fore the integral term. For P; and Q, the constant is 37/4.
For P, and Q; it is w/4. The relationship between the
variances immediately follows.

Q.E.D.

We now consider the other representations of surface ori-
entation that are used in this paper. First, let us character-
ize the processes that correspond to the tilt and slant of a
strictly isotropic process S. These processes are determinis-
tic functions of the partial derivative processes. The tilt is
given by

T =tan! 2, (A29)
P
and the slant is given by

mena-l (1 "\,
= = cos 1( P2+Q2+1) (A30)

An immediate consequence of the isotropy of S is that the
tilt has a uniform first-order marginal probability distribu-
tion and is independent of the slant. This is stated and
proved in the following proposition.

Proposition A4

Let S be a two-dimensional, wide-sense stationary, strictly

isotropic, mean-square differentiable process. Let T be the

tilt and X be the slant of the process S as defined above. The

first-order marginal probability distribution of T is uniform:
pIT(x, y) = 7] = zi 0<r<2m (A31)

Y3
and the processes T and = are locally independent. The

processes n, and T are also locally independent, as n, is a
deterministic function of 2.

Proof

Select a point (x, y) and rotate the coordinate system for S
by an arbitrary angle § around that point. If the tilt of S at
(x,y) is 7 in the original coordinate system, the tilt in the new
coordinate system is given by 77 = 7 — 6§, Because the
probability law of S is invariant to rotations of the coordi-
nate system, the probabilities of the two tilts 7 and 7’ are
equal:

p(T=7)=p(T=7)=p(T=7—10)

Since 6 was picked arbitrarily, the implication is that p(T =
7’) i3 a constant for all 7/, thus proving the first part of the
proposition.

The slant of S at (x, y) does not change with rotations of
the coordinate system, so that the conditional probability of
the slant given the tilt is constant for T = 7 and T = 7"

0<0<2m.
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pCIT=7)=pCIT=7)=pEIT=7-60) 0=<6<2mr.

Again, since 6 was picked arbitrarily, the implication is that
p(CIT = 7) is constant for all 7. We have, therefore,

p(IT) = p(2),

and T and 2 are independent.
Q.E.D.

The third representation of surface orientation that is
used in this paper is that of the surface normal and its
elements’ partial derivatives. The vector process that corre-
sponds to the surface normal is N =, ny, n.)7, as defined
in Section 2 of this paper. Like the gradient vector (P, Q)7,
the elements of the normal vector of an isotropic process S
are locally uncorrelated.

Proposition A5

Let S be a two-dimensional, wide-sense stationary, strictly
isotropic, mean-square differentiable process. Let N = (n,,
n,, n,)7 be a vector process that represents the normals of S.
The elements of N, when evaluated at the same point, are
uncorrelated; that is,

E[n.n,] = E[nn,] = E[nn,] =0. (A32)

Proof
N is the normalization of the vector (=P, —Q, 1)7, so that n,
and n, have the same relative values as P and Q. The
multivariate distribution of n, and n,, therefore, has the
same symmetry as the distribution of P and Q, and since
E[PQ] = 0, then E[n,n,] = 0, proving the first relation.

We can write n, as a function of n, and n, as

n,=,1-(@?+n/?.
It takes on the same positive value for n, = n, and n, = —n,
and similarly for n,. Since the distributions of n, and n, are

symmetric around zero (S being wide-sense stationary), we
have

p(n,n,) = p(-n,n,),

p(ny, n,) = p(-ny,n,),
so that

Ennm] =E[nmn]=0.

Q.E.D. .

The derivations of the illuminant tilt and slant estimators
require that the partial derivatives of the elements of the
normal vector be locally uncorrelated. In order to prove this
relation, we need the assumption that the second-order par-
tial derivatives of S are independent of the first-order partial
derivatives that are evaluated at the same point. Proposi-
tion A1 states that these partial derivatives are uncorrelated
for wide-sense stationary, strictly isotropic prcoesses. This
fact does not, in general, imply that they are independent.
Independence will hold, of course, for Gaussian processes, as
the partial derivatives of the process would also be Gaussian.
The implementation of the slant estimator given in this
paper does, in fact, assume a Gaussian probabilty law for S.

With the independence assumption, we can state and
prove the following propostion.
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Proposition A6

Let S be a two-dimensional, wide-sense stationary, strictly
isotropic, mean-square differentiable process. Assume that
the second-order partial derivatives of S, P,, Q,, and P, are
independent of the first-order partial derivatives P and Q.
The partial derivatives of n, and n, are locally uncorrelated
with the partial derivative of n, that is computed in the same
direction. The partial derivatives of any one of the elements
of N, which are computed in the x and y directions, are
locally uncorrelated. Writing the partial derivative that is
computed in an arbitrary direction, 4, as d/dry, we get the
first relation, which is given by

on, on, dn, on,
E =E|=2Z=|=0. (A33)

Ory dry Ory dr,

The second relation is given by

E on, on, - dn, on, -E on, dn, ~0 (A34)
ox dy | |ox dy| |ox day|

Proof

To prove any one of these relations, we can expand the
partial derivatives of the elements of N in terms of n,, T, and
the partial derivatives of P and Q and show that the result-
ing expression evaluates to zero. As examples, we will
present proofs for the relations appearing in the derivation
of the tilt estimator given in Section 3 of this paper. The
first of these is that E[(dn./drs)(dn,/0ry)] = 0. Expanding
on,/dry, we get

én, dn, gp

dry, 9P drg

on, 5Q
oQ dry

- -1 p? p
P+ Q@+ 1) P2+ Q+1)¥2] "

PQ
¥ [(1?2 +Q+ 1)3’2] &,

= (-n, +n,’n,)P, + (n,n,n,)Q,. (A35)

We can relate n, and n, to n, and the tilt T by using
n,=,1-n2cosT, (A36)
n,=,1-nSsinT. (A37)

Substituting Eqs. (A36) and (A37) into Eq. (A35), we get

on
—= = [-n, + (n, — n,%)cos® T|P,
ory ‘

+[(m, —n,}sin T cos T|Q,,. (A38)

Expanding dn,/dr; in the same way, we get

dn .
gr—;— = (n,/1-n,2cos )P, + (n,%/1 ~n?sin T)Q,,
(A39)

The cross correlation between dn,/dry and dn,/dr, is given by
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on, én, | 3 5 9
E[ar,, 6r,,:| =E[-n2/1—n, cos(T)P, *]
+E[y1—-n.? (0, — n,°)cos’(T)P, |
+ E[y1 - n,*(n,® — n,%)sin*(T)cos(T)Q, 7]

+ E[-n,’\/1 —n?sin(T)P,Q, |

+2E[/1 - n,%2(n? - nz5)sin(T)cos2(T)P,aQ,0].

(A40)

Because of the isotropy of S, n, and T are independent
(Proposition A4), and since they may both be expressed as
functions of P and Q, they are also independent of P,, and
Q;, (by assumption). The expectations of the terms that

involve n,, T, P,,, and Q,, may, therefore, be separated,
giving

E[% i’i‘_z] = E[-n,%/1 - n.2|Ejcos TIE[P, ]

dry dr,
+ ElY1- 0@, - n,9]E[cos’ TIE[P, ]
+E[\1-1.2(n? — n,%)]Efin® T cos T|E[Q, 2]
+ E[-n,*\/1 - n.?|Elsin TIE[P,Q,]

+2E[{1—1n,2(n,% — n,%]E[sin T cos® T|
X E[P,Q,]. (Ad1)

Since T has a uniform distribution, E[sin T cos™ T] = E[sin"
T cos T] = 0 for n = 0, and E[cos™ T] = 0, for m odd. The
terms that involve T, therefore, all go to zero, which leaves

on, on,

E[E E] =0. (A42)

The second relation needed in the derivation of the tilt
estimator is that E[(dn,/dx)(dn./d,)] = 0. The expression
for dn,/dy is obtained by replacing P, with P, and Q, with Q,
in the expression for dn,/dx [Eq. (A38)]. Expanding the
expectation, we get

[anx on,

9% E] =E[f-n, + (n, — nz3)cos.2 T} E[Pxpy]

+ E[{(n, — n,%)sin T cos TY|E[Q,Q,)]

+ E[-(n,? — n,)]E[sin T cos TE[P,Q,]
+ E[(n, — n,%)?|E[sin T cos® T|E[P,Q,]
+ E[~(n,2 = n,)]E[sin T cos T]E[Q,?]

+ E[(n, — n,%)®|E[sin T cos® T|E[Q,].
(A43)
The first two terms in the expression go to zero because

E[P.P,] = 0 and E[Q.Q,] = 0, and the last four terms go to
zero because Efsin T cos"T] = Oforalln = 0. We get

E on, on, | _ 0 (A44)
ox dy |
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The remaining relations stated in the proposition may be
proved by using similar expansions.
Q.E.D.

APPENDIX B

The illuminant slant estimator presented in Section 6 of this
paper makes use of the variances of the partial derivatives of
image luminance that are computed in different directions
inthe image. The variances are functions of the variances of
the partial derivatives of the components of the normal
vector process N. In particular, we require expressions for
E[(dn./0x)?], E[(dn./0y)?], E[(dn./3x)?], and E[(dn,/dy)?].
Expressions for the necessary partial derivatives are derived
in the proof of Proposition A6 and given in Eqs. (A39) and
(A40). For E[(dn,/0x)?], we obtain

E[(%)j = E[{~n, + (n, — n,%)cos’® T}*|E[P,?]
+ E[{(n, — n,%sin T cos TP E[Q,7]
= {E[n,?] — 2E[n,?|E[cos® T]
+ 2E[n,*|E[cos® T] + E[n,?]E[cos* T]
— 2E[n,*]E[cos* T] + E[n,5]E[cos* T]JE[P,?]
+ {E[n,%|E[sin? T cos? T| — 2E[n,%]
X E[sin? T cos? T]
+ E[n,’|E[sin’® T cos® T}E[Q,?]. (B1)

The cross term E[P,Q,] goes to zero. For the terms that
contain T, we have

1

E[cos®’T| = 5 (B2)
i3

Elfcos*T] = ry (B3)

E[sin® T cos® T] = % (B4)

Substituting back into Eq. (B1) and simplifying, we get

2
] (%) |- 2w+ £ m + 2 pmn} e

+{5 20 -  Bln +  Bln.1}E1Q.2
(B5)

To derive a term for E[(n,/dy)?], we need merely replace P,
in the preceding equation with Py, and Q. with Q,, giving

E [(%)2] = {% E[n,"] + % E + % E[nf]}E[Pf]

N {% B~ LBl + 1 E[n,G]}E[Qf]-
(B6)

From Propositioﬁ B3, we know that we can replace E[P,?]
with 3E[P,?], E[Q,?] with E[P,?], and E[Q,?] with 3E[P,2],
so that we can further simplify Eqs. (B5) and (B6) to
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5 1 5
{2 52 + L Bln) + S 2R

1)

on.\2] (3 1 3
E[<6—;> :I = {Z E[nzz] - '2‘ E[nz4] + Z E[DZG]}E[PJ,ZJ.
(B8)
These are the expressions given in Section 6 of this paper.
One can also see that E[(dn,/dx)?] > E[(dn,/dy)?] for all
nonplanar isotropic surfaces, which is a fact used in the

derivation of the tilt estimator.
Using Eq. (A39) to expand E[(3n./dx)?], we obtain

E[(%)j = E[n,*(1 - n,%)cos’ TIE[P.?]

+ E[n,*(1 — n,%)sin® T|E[Q,7]
={{E(n,*) - E(m,%))E[cos® T)E[P,?]

+ {(E[n,] — E[n,%])E[sin® THE[Q,?].
(B9)

The cross term E[P,Q,] goes to zero. Substituting Eqs.
(B2)-(B4) for the terms that contain T and simplifying, we

get
2
-
+{3 2.1 - 5 B }EIQ,
(B10)

Using the relations E[P,?] = 38E[P,?] and E[Q,?] = E[P,?]
and noting that E[(dn,/dx)2?] = E[(dn./dy)?] for an isotropic
process S, we obtain the final result

on,\2 on,\?
E [(3?) ] =F [( a?) ] = 2E[n,"] - 2E[n,5)E[P,?].
(B11)

Equations (B7), (B8), and (B11) are all that is needed for the
illuminant slant estimator developed in this paper.

APPENDIX C

Implementation of the illuminant slant estimator requires a
specification of the form of the local distribution of the
partial derivatives of surface depth. From this specifica-
tion, we can derive expressions for the moments of n, that
are used in the estimator. If we assume that the partial
derivatives have a Gaussian distribution, which is given as

1

fe@) = = exp[—p*/(20,%)], (C1)
fo(@) = —— expl~q*/(25,2)], (C2)

o,

then n, will have the following distribution, as derived in
Section 5:
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exp[1/(2¢,2)]
f, n,(nz) = W

exp[~1/(2n,%0,9)], 0<n,=<1

(C3)

(Note that P and Q have the same variance o2 since S is
assumed to be iostropic). The calculation of expressions for
the moments of n, is straightforward. For the mean of n,,
we have

1
En)] = [0 nfo (n,)dn,

1 exp[1/(20,)]
= L —;pr—exp[—l/(2n,,,2¢rp2)]dnz

2 1
= aﬂ: exp(1/2ap2)|:1 - erf(\/gap):l , (C4)

where erf( ) is the standard error function. For the variance
of n,, we have

1
Eln’] = [ n.2f (n)dn,

= jl M exp [—1/(2n220P2)]dn2

o oyn,

exp[1/(20,2
_ expl (2”)]E1 1\, (C5)
2ap 20p2

where E,(t) is the nth-order exponential integral, which is
defined as

©

Ey(6) = [ %6 dx. )

t

For higher-order even moments of n,, E[n,?], we have

1
E[n,] = [ n,2f, (n,)dn,
0

n, 2 exp[—1/(2n %0, ))]dn,

_ ]1 exp[1/(20,)]

2
0 0p

(C7)

_ exp[1/(20,%)] E ( 1 )

n_ 2n 2
2%a, 20,

The nth-order exponential integrals are recursively related
to each other by the relation

L ot (n-1E, ). (C8)

En—l(t) = tn_l

We can, therefore, derive a recursive expression for the even
order moments of n,. This expression is given below:

1
ERn,>)=———{1 - E[n,>?}, >1. (C9
e R L (C9)
For the fourth and sixth moments of n,, we have

1
E[nz4] = 5.2 {1 - E[nz2]}t (C].O)

2¢rp
Bnf) = 1~ Eln, ). (C11)

9p



David C. Knill

ACKNOWLEDGMENTS

This research was supported by National Science Founda-
tion grant BNS-8708532 to Daniel Kersten and by National
Science Foundation grant BNS-85-18675 to James Ander-
son. The author thanks Dan Kersten and James Anderson
for their unwavering support and helpful comments.

REFERENCES AND NOTES

1. K. Ikeuchi and B. K. P. Horn, “Numerical shape from shading
and occluding boundaries,” Artif. Intell. 17, 141-184 (1981).

2. C. H. Lee and A. Rosenfeld, “Improved methods of estimating
shape from shading using the light source coordinate system,”
Artif. Intell. 26, 125-143 (1985).

3. D. C. Knill and D. Kersten, “Learning a near optimal estimator
for surface shape from shading,” Comput. Vision Graphics Image
Process. (to be published).

Vol. 7, No. 4/April 1990/J. Opt. Soc. Am. A 775

4. A. P. Pentland, “The visual inference of shape: computation
from local features,” Ph.D. dissertation (Massachusetts Institute
of Technology, Cambridge, Mass., 1982).

5. A. P. Pentland, “Finding the illuminant direction,” J. Opt. Soc.
Am. 72, 448-455 (1982).

6. This is a weaker condition than sample differentiability, which
would require that all samples of the process were differentiable.

7. The variance of a random variable X is defined as Var[X] = E[X2]
— E{X}% For most cases presented in this paper, E[X] = 0, and
the variance reduces to Var[X] = E[X?]. Tobe more compact, we
use E[X?] to refer to variance when the mean of the random
variable (or stochastic process) in question is zero.

8. Staff of the Research and Education Association, Handbook of
Mathematical, Scientific, and Engineering Formulas, Tables,
Functions, Graphs, Transforms (Research and Education Asso-
ciation, New York, 1984).

9. H. J. Larson and B. O. Shubert, Random Noise, Signals and
Dynamic Systems Vol. 2 of Probabilistic Models in Engineering
Science (Wiley, New York, 1979).



