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Human discrimination of fractal images
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In order to transmit information in images efficiently, the visual system should be tuned to the statistical structure
of the ensemble of images that it sees. Several authors have suggested that the ensemble of natural images exhibits
fractal behavior and, therefore, has a power spectrum that drops off proportionally to 1/ffl(2 < 6l < 4). In this paper
we investigate the question of which value of the exponent f describes the power spectrum of the ensemble of images
to which the visual system is optimally tuned. An experiment in which subjects were asked to discriminate
randomly generated noise textures based on their spectral drop-off was used. Whereas the discrimination-
threshold function of an ideal observer was flat for different spectral drop-offs, human observers showed a broad
peak in sensitivity for 2.8 < < 3.6. The results are consistent with, but do not provide direct evidence for, the the-
ory that the visual system is tuned to an ensemble of images with Markov statistics.

INTRODUCTION

One goal of the human visual system is the efficient trans-
mission of information in images of our environment. From
this point of view, the visual system should be studied as a
communication device.14 It is a combination of a physical
channel and a coding device. The physical channel consists
of the eye and the neural components of the system. The
coder is the organization of these components (e.g., the re-
ceptive fields and pattern of interconnections of neurons).
The information capacity of the visual system is limited by
physical constraints on its components, including both opti-
cal constraints, such as the diffraction limit on resolution
and photon noise, and constraints on the nervous system,
such as the number of available neurons, their dynamic
range, intrinsic noise, and a limit on the available metabolic
resources. Because of this capacity limitation, the coding
scheme should be matched to the statistical structure of the
ensemble of images that it will see. For humans, this is the
ensemble of images of both the natural and synthetic envi-
ronments. We will refer to these images generically as natu-
ral images. As a trivial example of the relationship between
the visual system and the statistics of the images that it sees,
consider a world in which all surfaces have the same spectral
reflectance properties. Our color-vision mechanisms would
merely provide a redundant coding of the information in
images of this environment. They would reflect an ineffi-
cient allocation of the capacity of the communication chan-
nel.

These ideas have motivated a number of recent computa-
tional models of neural function in the visual system. Srini-
vasan et al.5 show that a lateral inhibitory type of receptive
field can provide an optimal code for ensembles of images

that have an exponentially decaying spatial autocorrelation
function. The spatial-frequency tuning and selectivity of
neurons in primary cortex may also be related to efficient
coding. 6 7 More-recent research- 10 has concentrated on the
modeling of developmental processes that can lead to the
evolution of codes in neural networks with repeated expo-
sure to example images. One can relate the receptive fields
in any of these models to the problem of efficient coding of
images from a defined ensemble.

A full understanding of the performance of the visual
system in its role as a communication device requires that
one study it in the context of the environment in which it
operates. A logical question to ask is: How effective is the
visual system in transmitting information about natural im-
ages? Any given transmission system (coder and channel)
will more efficiently transmit the information in images
from some ensembles than from others; thus we can say that
it is tuned to a particular ensemble.11 This observation
leads to a natural generalization of the question: For what
ensemble(s) of images is the visual system an efficient trans-
mission device? As a stochastic ensemble is defined wholly
by its statistical structure, the question could be rephrased
to ask what the statistical structure of this ensemble is. One
can then ask whether this structure matches that of natural
images and, if not, why.

In this paper we describe a psychophysical experiment
designed to explore the statistical structure of the ensemble
of images to which the human visual system is tuned. As an
experimental measure, we use subjects' performance on a
discrimination task for images drawn from ensembles with
different correlational structures. Here we have simplified
the question: What is the correlational structure of the
ensemble of images for which the visual system is an efficient
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transmission device? Clearly a full answer to the more
general question would require looking at differences in oth-
er statistics as well.

The first step in our study requires a specification of
which ensembles to use in the experiment, that is, which
ensembles will form the basis of our search. A model for the
statistics of natural images will motivate our selection.

Natural Image Statistics: The Fractal Model
The ensemble of images that we consider contains those
generated by the perspective projection of three-dimension-
al scenes onto an imaginary, finite-sized planar surface. We
imagine the projection to be through an ideal camera in
which the effects of diffraction, aberrations, and discrete
sampling are absent. Let I(x, y) be a two-dimensional ran-
dom field specifying the light flux incident upon the image
plane. We will assume that I is stationary and isotropic.1 2

We are interested in characterizing the correlational struc-
ture of I, given by the autocorrelation function RI(Ar) or,
equivalently, by its power spectrum' 4 Pi(fr). Ar is the Eu-
clidean distance between points in an image, and fr is radial
spatial frequency.

Little empirical research has been done on estimating the
correlational structure of natural images, though several
models have recently been proposed. Julesz15 refers to his
doctoral dissertation, in which he estimated the autocorrela-
tion function for television images and found it to drop off
exponentially with the distance between points. Srinivasan
et al.

5 also suggest an exponential model for natural images.
In their paper, however, they present data from only one
image, and their proposal is based on a qualitative analysis
of the empirically determined autocorrelation function.

We would like to consider a broader class of ensembles
than those with exponential autocorrelation functions. The
autocorrelation function of such an ensemble is given by

RI(Ar) ekAr (1)

where the constant k specifies a spatial scale for luminance
changes in images from the ensemble. A search through this
set (i.e., a search through the set of values of k) amounts to a
search for the natural scale of images. Objects in our envi-
ronment have a large range of sizes. Moreover we view them
at a range of distances, so that the projection of any one
object will vary in size between images. One might expect,
therefore, that the statistics of natural images would be scale
invariant, or at least vary smoothly across scales. This is the
defining characteristic of a class of functions known as ran-
dom fractals16"17 (see Appendix A for a more comprehensive
discussion of fractals). Differences in the one parameter
characterizing fractal ensembles, their fractal dimension,
reflect differences in their statistical structure at all scales.
The fractal model thus provides a more appropriate set of
ensembles for our investigation.

The particular model that we will consider is fractional
Brownian motion, as originally defined by Mandelbrot.16

This model is a generalization of the well-known Brownian
motion, or Wiener process. Fractional Brownian motion is a
Gaussian process; therefore it can be fully specified by its
power spectrum. The power spectrum of two-dimensional
fractional Brownian motion is given by

PI(fr) 1 (2)

for an isotropic ensemble. The exponent # is related to the
fractal dimension D by

=8- 2D. (3)

Figure 1 shows the power spectra of two fractal ensembles,
one with a fractal dimension of 2.5 and one with a dimension
of 3.0. Most of the information in these ensembles is in the
lower frequencies, since the variance at those frequencies is
highest. As the fractal dimension is increased, the variance,
and thus the information content, becomes spread more
evenly across the spectrum.

The fractal model, to some degree, subsumes Gaussian
ensembles with exponential autocorrelation functions.
Such an ensemble behaves like a fractal ensemble with a
fractal dimension of 2.5 at scales below that defined by its
space constant k; that is, its power spectrum exhibits power-
law behavior at frequencies greater than k3.

Pentland18 proposed that fractional Brownian motion
might be used to model textures in images. More recently,
Field7 has suggested that the ensemble of natural images has
a fractal dimension of 3. He bases this on the sample power
spectra of several images of natural scenes (e.g., mountains,
water, rocks) that seemed to drop off as 1/fr2 and on the
argument that the average rms contrast in images should not
vary with viewing distance (a constraint uniquely met by a
power spectrum of 1/fr2 ).

Human Discrimination of Fractal Dimension
In the Introduction, we posed the question, What is the
correlational structure of the ensemble of images to which
the visual system is optimally tuned? In the experiment
presented here, we consider the class of fractal ensembles, in
particular, ensembles that approximate fractional Brownian
motion. The correlational structure of these ensembles, as
specified by their power spectra, is completely characterized
by one parameter, the fractal dimension D. Because the
fractal dimension is linearly related to the exponent of spec-
tral drop-off,19 we can replace the fractal dimension with the
exponent fl in our discussion without loss of generality. For
convenience we will refer to ensembles as being specified by
this exponent, which we will call the spectral drop-off. We
can now rephrase the question: What is the spectral drop-
off of the ensemble to which the visual system is optimally
tuned? The use of fractional Brownian motion as the spe-
cific fractal model for our study has the advantage that the
statistical structure of these ensembles, being Gaussian, is
completely specified by their power spectra. We therefore
do not have to consider the effects of changes in higher-order
statistics between ensembles, making the model ideal for
asking questions focused on the correlational structure of
images.

The central idea behind the experiment is that human
subjects' performance on psychophysical tasks using images
from different ensembles is dependent on the ability of the
visual system to transmit information about the images in
those ensembles. If their performance is averaged over a
large number of representative samples from each ensemble,
it provides a measure of this ability for the different ensem-
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Fig. 1. One-dimensional slices through the power spectra of two fractional Brownian motion ensembles, one with fractal dimension D = 2.5 (0
= 3.0) and the other with fractal dimension D = 3.0 ( = 2.0). On a log-log plot, the spectra fall off linearly, with a slope given by exponent 3.
The scatter plots show the actual spectra of sample images drawn from these two ensembles, with the power along different orientations
collapsed onto one dimension.

bles. We use an experimental task in which subjects are
asked to discriminate between images drawn from ensem-
bles with different spectral drop-offs. Specifically they are
asked to determine which of two randomly generated images
is drawn from an ensemble with lower spectral drop-off
(higher fractal dimension). Figure 2 shows examples of
three such images. In this example the difference in spec-
tral drop-off from one to another of the three images is
rather large (i = 1.0), and the image in Fig. 2(c) is easily
seen to come from an ensemble with a lower drop-off. As
fractal dimension, and thus spectral drop-off, is correlated
with roughness, the task is essentially one of determining
which of two images has a rougher texture.

Though the experiment presented here is designed to in-
vestigate a question about the information coding and trans-
mission characteristics of the visual system, it bears an obvi-
ous relation to research in texture discrimination. Early
research on texture discrimination focused on phenomeno-
logical tests of Julesz's2 0'21 conjecture that first- and second-
order image statistics could be used for texture discrimina-
tion, but third- and higher-order statistics could not.
Counterexamples to this conjecture caused a switch in em-
phasis toward investigation of textures composed of featural
elements.2 2 Though it has been clearly demonstrated that
humans could discriminate patterns based on their second-
order image statistics, little research has been done to pro-
vide a detailed characterization of this ability. Pratt et al.23

showed that humans can discriminate Gaussian textures
with exponential autocorrelation functions based on the

space constant k of the function; however they did not ob-
tain any quantitative measure of performance. More re-
cently, Rensink 24 measured the discriminability of one-di-
mensional fractal textures based on their spectral drop-off
and found that performance was best for the largest drop-off
used,2 5 j = 4. In the current experiment, we extend the
investigation to two-dimensional random textures and col-
lect data for a larger number of spectral drop-offs. (Rensink
used four spectral drop-offs, between 1 and 4.) Further-
more we show, by using simulations of an ideal observer, that
the discrimination thresholds collected are absolute mea-
sures of performance.

Ideal Observer for Texture Discrimination
Performance on a signal discrimination or detection task is a
function both of factors in the observer and of the informa-
tion content of the stimuli. The performance of a statisti-
cally optimal, or ideal, observer depends only on the infor-
mation content of the stimuli. The ideal observer provides a
benchmark with which to compare human performance, in
order to draw inferences about what aspects of performance
are related to factors within the observers. Typically, effi-
ciency measures are derived to reflect the relative sample
sizes needed by ideal and human observers to achieve equiv-
alent levels of performance on specific tasks.27 Efficiencies
defined in this way provide a dimensionless measure that
may be used to compare human performance not only in a
task at different levels of some independent variable but also
between tasks.
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Ideal observers have been used to estimate human effi-
ciency in a number of visual tasks, including the detection of
light in scotopic2 8 and photopic conditions, 29 the detection of
changes in dot density in a display of random dots,27 and the
detection and discrimination of simple luminance patterns
in noise.30,31 In this study, we show that the discrimination
threshold of the ideal observer is constant for different spec-
tral drop-offs. We can therefore use changes in human
subjects' thresholds for different drop-offs to draw conclu-
sions about what they are tuned to in an absolute sense.

METHODS

(

Fig. 2. Three examples of images randomly drawn from ensembles
of fractional Brownian motion. The images are drawn from ensem-
bles with spectral drop-offs of (a) 2.0, (b) 3.0, and (c) 4.0. The
corresponding fractal dimensions are (a) 3.0, (b) 2.5, and (c) 2.0.

cm high. For the viewing distances and stimulus size used,
this screen resolution provided available spatial-frequency
bandwidths of 0.87-28 cycles per degree (c/deg), for a view-
ing distance of 1 m, and 1.3-42 c/deg, for a viewing distance
of 1.5 m. Subjects used the workstation's mouse to give
responses.

Definitions
The rms contrast of an ensemble is given by

I 1/2
P(fx' fy)dfxdf A2

Apparatus
Stimuli were generated and displayed on a Sun 3/160 work-
station with an 8-bit gray-level display. The screen had a
power-law nonlinearity, with a gamma exponent of 2.67.
We modified the lookup table to linearize the display. The
gamma correction 32 lowered the effective resolution of the
screen to 7.27 bits. After gamma correction, midgray for the
screen (gray level 127) had a luminance of 37 cd/M2 . The
spatial resolution of the screen was 1152 pixels wide by 900
pixels high. The size of the screen was 38.6 cm wide by 30

where P(fx, fy) is the power spectrum and As is the mean for
the ensemble. If the ensemble is spatially isotropic, then
the power spectrum can be represented as a function of
radial spatial frequency, and the rms contrast is given by

{27r[ frP(f;)dfr - 2] }

where fr is the radial spatial frequency. The sample rms
contrast of an image in the ensemble will vary somewhat

Knill et al.
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around C. It is given by the same equation, after replacing
P(fr) with the sample power spectrum Ai(fr). The use of the
term rms contrast to refer to an ensemble average differs
from its use in most psychophysics literature, in which it is
generally used to refer to the contrast of a particular image.
The definition used here is necessary, however, to maintain
consistency with other statistical terminology and to distin-
guish between what is in one case an ensemble average and in
another a sample statistic.

Stimuli
Ideally we would have used images of large spatial extent
and broad spatial-frequency bandwidth as stimuli; however,
computational limits on the generation and storage of large
images constrained us to use images that were 64 X 64 pixels.
The spatial-frequency bandwidth of these images was 5 oc-
taves, and the need to use a band within the visible limits of
human vision limited the possible size of the images in de-
grees of visual angle. As an example, 64 X 64 pixel images,
in order to span a frequency band from 1 to 32 c/deg, would
have to subtend a visual angle of 1 deg. The limit on stimu-
lus size raises the possibility that our results would depend
primarily on the specific stimulus conditions used (size and
spatial-frequency band of images). To control for this prob-
lem, we collected discrimination thresholds for two different
viewing distances. We also collected thresholds for spectral
drop-offs outside the range of those defining fractal ensem-
bles (2.0 < < 4.0) in the hope that the extra data would
illuminate condition-dependent effects.

The following procedure was used to generate stimulus
images. Random 64 X 64 arrays of Fourier coefficients were
created by independently sampling from a normal distribu-
tion at each frequency, resulting in samples of white noise
with unit variance. The coefficients were then scaled by the
appropriate factor at each frequency to generate samples
from an ensemble with a specified spectral drop-off. The
inverse Fourier transform of these arrays was computed by
using a fast Fourier-transform routine to generate 64 X 64
pixel sample images3 3. The resulting images were then
scaled to give them a rms contrast of 35% (recall that this is
the average contrast of images in the ensemble). The mean
of the images was fixed at 127 (in gray-scale units). A rms
contrast of 35% guaranteed that fewer than 0.5% of the pixels
would underflow or overflow (have values less than 0 or
greater than 255) and need to be thresholded. Images gen-
erated in this way can be considered to be samples drawn
from a Gaussian ensemble with a particular spectral drop-
offs (1/frfs) and a specific rms contrast. The plot of the
power spectra of two such images (Fig. 1) illustrates the
variability in the spectra of the stimuli.

The stimuli were displayed on the center of the screen
with the background luminance set to 127, the mean lumi-
nance of the stimuli.

Procedure
The experiment consisted of a two-alternative forced-choice
task in which subjects were asked to tell which of two ran-
domly generated images came from an ensemble with a lower
spectral drop-off. We used a modified staircase procedure,
QUEST,34 to estimate the threshold difference in spectral
drop-off needed for subjects to discriminate images correct-
ly 75% of the time. Thresholds were determined for 10

different reference drop-offs between 0.8 and 4.4 (0.8, 1.2,
1.6, 2.0, 2.4, 2.8, 3.2, 3.6, 4.0, and 4.4). Spectral drop-offs
between 2.0 and 4.0 correspond to ensembles of fractional
Brownian noise and had fractal dimensions between 3.0 and
2.0, respectively. We collected discrimination thresholds
for three conditions, which we will call (1) high-contrast,
near, (2) low-contrast, near, and (3) high-contrast, far. In
the high-contrast, near, condition the rms contrast of images
was 35%, and the viewing distance was 1 m. At this viewing
distance, the stimulus images spanned a 5-octave spatial-
frequency band between 0.87 and 28 c/deg. In the low-
contrast, near, condition the viewing distance remained 1 m,
but the rms contrast of the images was decreased by 1/2, to
17.5%. In the high-contrast, far, condition the rms contrast
of the images was 35%, and the viewing distance increased to
1.5 m, at which images spanned a spatial-frequency band
between 1.3 and 42 c/deg.

Experimental trials were organized into twelve sets of ten
50-trial blocks, one block for each reference spectral drop-
off. Each block consisted of running QUEST for 50 trials to
estimate the discrimination threshold for a given reference
drop-off. The resulting data consisted of the raw responses
and 12 estimates of threshold for each reference drop-off.
The increments in spectral drop-off between reference and
test images varied in decibel steps from -10 to 10 dB, with a
0-dB increment of 0.2 (1 dB corresponds to a 12% increase).
The increments varied from a minimum of 0.0644 (-10 dB)
to 0.62 (+10 dB). Note that the increments, not the actual
test drop-offs, varied in decibel steps. Each experimental
trial consisted of a sequential presentation of an image that
was randomly drawn from an ensemble with the reference
spectral drop-off and an image that was drawn from an
ensemble with the test drop-off selected by the QUEST pro-
cedure. The order of presentation was random. The stimu-
li were presented for 250 (50) msec, with an interstimulus
interval of 500 (50) msec. The interstimulus interval was
chosen to make trials reasonably fast while avoiding con-
founding masking effects. Subjects were asked to press one
of two buttons on the mouse to indicate whether the first or
second stimulus presented was drawn from an ensemble
with lower spectral drop-off. Stimulus presentation and
interstimulus interval times varied owing to the fact that the
Sun 3/160 was operating as a multiuser workstation and was
servicing the file system for a local area network. To control
for this variation, the program controlling the experiment
timed each presentation and discarded trials for which ei-
ther of the presentation times differed from 250 msec by
more than 50 msec.

Subjects were given visual feedback in the form of a mes-
sage indicating the correctness of their response. Though
sometimes more were necessary, a minimum of four sets of
trials were run to train the subjects on the task. The experi-
ment proper was begun when the within-set average thresh-
old for a subject appeared to level off between sets of trials.

The images used in the experiments were generated before
running a set of trials, as the time that it took to generate the
images made it unfeasible to do so in real time. For each
block of trials, 50 random images were generated from an
ensemble with the appropriate reference spectral drop-off,
and 10 images were generated from each of the ensembles
defined by the 21 test drop-offs. Each block consisted of
exactly 50 trials, which guaranteed that no reference image
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would be presented twice. It was possible, however, that
some test images were presented more than once because the
QUEST procedure occasionally tested at 1 test drop-off more
than 10 times. Such repeats occurred only rarely and were
separated by a large enough number of trials, on average,
that we expect the effects of repeated presentations to be
negligible.

Ideal Observer
We consider the ideal observer for this task to be the maxi-
mum-likelihood estimator of the spectral drop-off of an im-
age. The ideal observer would calculate estimates of the
spectral drop-offs of the two images presented in a trial and
select the image for which its estimate was the lowest. Ap-
pendix B gives details of the derivation of the maximum-
likelihood estimator. We estimated the ideal observer's 75%
correct thresholds for each of the 10 reference spectral drop-
offs by running simulations in which the ideal observer acted
as subject for a QUEST procedure that ran 400 trials. Novel
random stimuli were generated for each of the trials.

Data Analysis
We estimated both the ideal observer's and human subjects'
thresholds by using the a posteriori mean of threshold, con-
ditional on the data. The posterior distribution is given by

pi = p(x,) ' (6)

where Ti represents the threshold for a reference spectral
drop-off i and xi represents the raw data collected over all
trials for the reference spectral drop-off in one condition.
We modeled the forward distribution p(xilTi) as the Weibull
function,34 the same used in the QUEST procedure for plac-
ing experimental trials. We assume no prior bias on the
threshold, so the prior distribution of Tj is uniform, and
p(Ti) is a constant for all Ti. For a given set of raw data xi,
p(xi) is a constant, so Eq. (6) simplifies to

p(Tilxi) = K * p(xilTi), (7)

where the constant K is p(Ti)/p(xi). K can be calculated by
selecting the constant that makes the integral of the posteri-
or probability distribution equal to one:

K 1.0 (8)

Ip(xjT)dT

The a posteriori mean is the mean of the distribution given
by Eq. (7), and the standard error of the estimate is the
standard deviation of the distribution.

A full characterization of p(xilTi) requires knowledge of
the slope of the Weibull function. We compute maximum-
likelihood estimates of the slope Si and threshold Ti from the
distribution p(xilTi, Si) and use the estimated slope in the
computation of p(Tilxi) for the estimation of the a posteriori
mean threshold.

The a posteriori mean differs from the maximum-likeli-
hood estimate, which selects the value Ti = Ti that maxi-
mizesp(xilTi). In the case presented here, in which no prior
constraints are placed on the threshold, maximum-likeli-
hood estimation would correspond to selecting the mode of
p(Tilxi), so-called maximum a posteriori estimation. The

maximum-likelihood estimates of thresholds computed
from the data in these experiments turn out to be slightly
lower than the a posteriori means.

Subjects
There were three observers. DCK and DF are authors, and
DR was naive to the details of the experiment. DCK and
DR are emmetropes, and DF is a myope with 20/20 corrected
vision. Viewing was binocular with fixation on the center of
the screen.

RESULTS

The results of running simulations with the ideal observer
(Table 1) show that its threshold function is statistically flat
for the reference spectral drop-offs used in the experiment.
The average threshold across the 10 spectral drop-offs for
the ideal observer was -12.3 + 0.49 dB (l = 0.05). Be-
cause of the flatness of the ideal-threshold function, the
efficiency curves for human subjects have the same shape as
the absolute-discrimination threshold curves. Since the
shape of the curves is our primary interest, we will show the
absolute-threshold curves instead of efficiency curves and
comment on calculated efficiency when appropriate.

Figure 3 shows the estimates of discrimination threshold
as a function of spectral drop-off for the three subjects in
each of the three conditions. The thresholds are given in
decibel increments. The axes above each graph delimit the
range of drop-offs that define fractal ensembles (2.0-4.0).
The threshold curves have two general features: a broad dip
in the fractal range and, in some conditions, another dip for
the smallest spectral drop-offs. DCK shows the second dip
in both of the high-contrast conditions, DF shows it in both
the low-contrast, near, and the high-contrast, far, condi-
tions, and DR shows it in all conditions. For all subjects, the
dip at low spectral drop-offs was largest in the high-contrast,
far, condition.

The discrimination task was designed to require the inte-
gration of information at different spatial frequencies; how-
ever, a close look at the task shows that it might be per-
formed with a simple strategy that uses the sample rms
contrast in only one frequency band. Figure 1 shows that
the power spectra of ensembles with different drop-offs, but
equal rms contrast, intersect at some frequencyf,. This fact
suggests a strategy for the discrimination task consisting of

Table 1. Ideal Observer's Thresholds for the Ten
Reference Spectral Drop-offs

Reference Spectral
Drop-off Threshold (dB)

0.8 -12.6
1.2 -11.6
1.6 -11.9
2.0 -11.9
2.4 -12.4
2.8 -12.4
3.2 -12.2
3.6 -12.4
4.0 -13.4
4.4 -12.4
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Fig. 3. Discrimination threshold curves for subjects (a) DCK, (b)
DR, and (c) DF. The thresholds are plotted as decibel increments
versus reference spectral drop-off. A plot of the threshold function
for the low-pass rms contrast model is shown as a bold line on each
graph. The average standard error is shown on the right-hand side
of each graph. An increment of approximately -3 dB is the lowest
measured threshold. This value corresponds to a real increment of
0.14.

rms contrast discrimination in either a high-pass (greater
than f) or a low-pass (less than f) frequency band. A
subject looking at the stimuli through a low-pass filter would
perform the task by selecting the image with lower sample
rms contrast, while one looking through a high-pass filter
would select the image with higher sample rms contrast. A
comparison of the sample spectra of the images in Fig. 1
indicates that this strategy could succeed for the discrimina-
tion task, at least for images drawn from ensembles differing
in spectral drop-off by a large amount.

We ran simulations for models that used the contrast-
discrimination strategy in both the low-pass and high-pass
bands. The models were assumed to have knowledge of the
intersection frequency f for each spectral drop-off. The
low-pass model used a decision variable given by the ratio of
sample rms contrasts in the low-pass bands of the two im-
ages:

01_D =-
2

211

2 1 Iz.I 
The model selects Image 1 if D < 1 and Image 2 otherwise.
The high-pass model uses a similar decision variable based
on the relative contrasts in the high-pass bands:

A ,2Ff frpl(fr)df - 1 /2
2
[ D _ 1D=- = - ~ 1 (10)

The model selects Image 1 if D > 1 and Image 2 otherwise.

The discrimination thresholds of both models drop sharply
as the spectral drop-off of the images decreases. The
threshold curve for the low-pass model is included in the
graphs in Fig. 3 for comparison with subjects' curves. The
improvement in subject performance at low drop-offs mir-
rors that of the low-pass model. Informal oral reports of the
subjects suggest the use of a low-pass contrast-discrimina-
tion strategy for images with low spectral drop-offs. All
three subjects reported selecting images with low perceived
contrast when the images had a low drop-off.

The dip in performance for ensembles with high spectral
drop-offs, including those specifying fractal ensembles, re-
tains approximately the same shape between conditions.
The primary difference is that the dip is more pronounced in
the low-contrast and far-viewing conditions. In the far-
viewing condition, DCK does show an improvement in per-
formance at a drop-off of 4.0, and DR shows a general de-
crease in performance for all spectral drop-offs.

The size of the standard errors for the threshold estimates
makes the differences in the middle region of the dip insig-
nificant; however, because the shape of the curves is so
similar for high spectral drop-offs, we average these thresh-
old estimates across conditions to get a final performance
curve. The averaged thresholds are shown with standard-
error bars in Fig. 4. Performance is clearly best for drop-offs
between 2.8 and 3.6.

Simulations indicate that the ideal observer's absolute
threshold for this task is inversely proportional to the square
root of the sample size (Table 2), so we define the appropri-
ate measure of efficiency as the squared ratio of the ideal
observer's threshold (Ai3 = 0.05) and the threshold of a
subject as
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Fig. 4. Discrimination threshold curves with standard-error bars
for each subject averaged across the three conditions. Only thresh-
olds for spectral drop-offs that are greater than or equal to 2.0 are
shown.

Table 2. Ideal Observer's Thresholds for Four
Different Image Sizes Using jB = 3.2 as the Reference

Spectral Drop-off

Image Size (Npixels) Threshold (dB)

16 X 16 (N = 256) 0.17 (A# = 0.204)
32 X 32 (N = 1024) -5.6 (Af = 0.106)
64 X 64 (N = 4096) -12.2 (AO = 0.50)

128 X 128 (N = 16384) -18.7 (A: = 0.024)

DF had a peak efficiency of 13%, DCK had a peak efficiency
of 10%, and DR had a peak efficiency of 7%.

DISCUSSION

The results presented here differ from those of Rensink,24

which showed peak performance for a spectral drop-off of
4.0. The discrepancy may simply result from differences in
discriminability of line textures and two-dimensional tex-
tures. Another possible cause for the difference, however, is
the difference in the sizes of the stimuli used. Rensink used
images that subtended 2 deg by 4 deg of visual angle, where-
as the stimuli used here subtended, in the near conditions,
1.15 deg by 1.15 deg of visual angle; therefore most of the rms
contrast in Rensink's stimuli was concentrated in a frequen-
cy band that was below that tested in this experiment.

The discrimination experiment was designed to investi-
gate the question posed in the introduction: What is the
correlational structure of the ensemble of images to which
the visual system is optimally tuned? In order to permit
any conclusions about the answer to this question to be
drawn from subjects' threshold curves, the task must meet
several criteria. Subjects' performance on the task should
reflect constraints on performance owing to the amount of
information in the stimuli reliably transmitted through the
system and not constraints on the subjects' ability to use the
information in performing the discrimination task. In light
of this problem, we should note that the task did seem
unnatural to subjects. Humans, on the other hand, are

remarkably adept at learning a wide range of visual tasks,
and we do not believe that the particular requirements of the
task embody the significant factor in the results.

The second criterion is that subjects' performance should
reflect a strategy that uses a broad band of information
available in the stimuli.3 6 We showed that subjects' per-
formance for ensembles with spectral drop-offs less than 2.0
could be well predicted by a model that used the information
in either only a low-pass or only a high-pass frequency band
of the stimuli. Specifically, it performed the task based on
rms contrast in one of the two bands. For ensembles with
spectral drop-offs greater than 2.0, however, the perform-
ance of subjects was better than that of this simple model.
To have achieved this level of performance, subjects had to
have based their decisions on the relative power in different
frequency bands of the two images presented in a trial.
Results from these conditions may be a more accurate reflec-
tion of information transmission limits in the visual system.
This is fortunate, as we are particularly interested in fractal
ensembles, which have spectral drop-offs between 2.0 and
4.0. The remainder of the discussion will deal with the
results for these ensembles.

In the Introduction, we presented two hypotheses about
the statistical structure of natural images. Let us assume
for a moment that the visual system is optimized to transmit
the information in natural images. According to Field's
hypothesis, we would expect performance on the discrimina-
tion task to be best for images from ensembles with a spec-
tral drop-off of 2.0. A modified version of the hypothesis of
Srinivasan (in which the space constant in the exponential is
permitted to go to zero) would suggest that the best perform-
ance would be for images from ensembles with a spectral
drop-off of 3.0. The data from this experiment are most
consistent with the modified hypothesis of Srinivasan et al.,
since discrimination performance was best in a range be-
tween 2.8 and 3.6.

A spectral drop-off of 3.0 has a special theoretical signifi-
cance for Gaussian ensembles, namely, that they are Mar-
kov. A Markov ensemble of images is one in which the
statistical dependencies between the light intensity at one
point in an image and the intensities at all other points is
fully characterized by dependencies with the point's nearest
neighbors. In fact, fractional Brownian motion with a drop-
off of 3.0 is a generalization of a random walk to two dimen-
sions.' 6 A Gauss-Markov ensemble that is stationary has an
exponentially decaying autocorrelation function,37 as in the
model of Srinivasan et al. As noted in the Introduction, the
power spectrum of such a process has a spectral drop-off of
3.0 for frequencies higher than that defined by the autocor-
relation function's space constant.' 9 The results may,
therefore, reflect the fact that we are tuned to ensembles of
images that are Markov. In a study related to this one,
Kersten3 8 had subjects predict the gray level of pixels de-
leted from natural images. He found that performance was
well modeled by a number of different nearest-neighbor
predictors. More significantly, subjects' performance in-
creased little when information beyond the eight nearest
neighbors was provided.

We used fractional Brownian motion for the generation of
stimuli in the experiment in part because it is Gaussian and
thus wholly defined by either its autocorrelation function or
power spectrum. A look at the images in Fig. 2 shows that

1-
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fractional Brownian motion is clearly too unstructured to be
a complete model of natural images. The images appear as
noise and are easily distinguishable from real examples of
natural images. This result is due to the existence of higher-
order statistical structure in natural images. The preva-
lence of coherent edges in natural images is one example of
this structure. An ensemble that shows power-law behavior
in its power spectrum need not even be fractal, if it has
higher-order structure. An ensemble of images of randomly
positioned circular spots would have a power spectrum with
a 1/fr2 envelope but would certainly not be considered frac-
tal, as it would not exhibit self-similarity across scales. The
argument that the human visual system is tuned to ensem-
bles whose spectra exhibit power-law behavior does not,
therefore, imply that it is tuned to fractal ensembles.

The discussion above leads to a cautionary note on draw-
ing conclusions that are too general from the results of this
study. Though the visual system may be better tuned to
ensembles of fractional Brownian noise with a spectral drop-
off between 2.8 and 3.6 relative to other ensembles of frac-
tional Brownian noise, one may find that the tuning shifts
with the addition of higher-order structure. One way to test
this possibility would be to do the same experiments report-
ed here with images that have the phase spectra of some real
natural images. Of course, a complete characterization of
the statistical structure to which the visual system is tuned
would include higher-order structure.

are more generally applicable to functions that are not self-
similar.

In order to apply these ideas to modeling natural phenom-
ena, Mandelbrot extended them to stochastic ensembles of
functions.' 6 In this case, self-similarity across scales within
an ensemble refers to similarity of the statistics of the func-
tions at different scales; that is, the statistics of a piece 1/nth
the size of the original function, after scaling by a factor of
nH(0 < H < 1), are in all respects the same as those of the
whole function (technically, these functions are termed self-
affine, as the scaling is nonuniform along different dimen-
sions). Fractal models have been successfully applied to a
wide range of natural phenomena, including the shape of
coastlines, rivers, and surface landscapes,16 the structure of
music, 26 and dynamical systems.3 8

The particular fractal model used in this paper is fraction-
al Brownian motion. It is defined by the following relation:

E I(x + Ax) -I(x) ]
IAXIH< Y f Y) (14)

where p(-) is a cumulative probability distribution function.
The random fractal function I and the index of spatial loca-
tion x may be vector valued. The exponent H is constrained
to have a value between 0 and 1. The fractal dimension of
the process I is

D =E+ 1-H, (15)

APPENDIX A

Fractal functions are characterized by a self-similarity over
different scales. For deterministic functions, this definition
means that a piece of the function 1/nth the size of the
original, when blown up by a factor n, is congruent to the
original function (similar up to a rotation or translation of
the function). Such a function may be characterized by its
similarity dimension,'7 which specifies how the number of
self-similar pieces in the function increases as the scale is
decreased. Mandelbrot defines the fractal dimension of a
function to be equivalent to its similarity dimension.' 6

The similarity dimension of a self-similar function is given
by the relation

where E is the Euclidean dimension of the function. Rela-
tion (14) implies that the increments of I over different
distances Ax, when scaled by a factor AxH, follow the same
probability law. The statistics of I are therefore said to be
invariant over changes in scale.

The spectral drop-off describing the power spectrum of a
one-dimensional slice of a fractional Brownian motion en-
semble is related to E and H by

, = 1 + 2H. (16)

For a radially symmetric ensemble, the power spectrum is
fully characterized as a function of radial spatial frequency,
in terms of which the spectral drop-off is given by26

9= 1+2H+ (E- 1) =E+2H. (17)

N = nD, (12)

where N is the total number of self-similar pieces 1/nth the
size of the original. From Eq. (12), we see that D can be
computed as

D= log N (13)
log n(

For fractal functions, D is bounded below by the topological
dimension of the function (a curve has a topological dimen-
sion of 1; a surface has a dimension of 2, etc.). The fractal
dimension, in some sense, corresponds to the roughness of
the function. Graphs of functions characterized by high
fractal dimensions appear rougher than those with low frac-
tal dimensions.

For self-similar functions, the similarity dimension corre-
sponds to other definitions of fractal dimension (e.g., the
Hausdorff-Besicovitch or Minkowski-Bouligand dimen-
sions). These definitions characterize a function's behavior
not at all scales but in the limit at infinitely small scales and

With appropriate substitutions, we obtain the equation pre-
sented in the text for the spectral drop-off of a radially
symmetric ensemble with E = 2:

= 8- 2D. (18)

APPENDIX B

The ideal observer for the discrimination task must compute
the maximum-likelihood estimate of spectral drop-off for
the two images being compared. In order to derive this
estimator, we need to know the distribution of the sample
power spectra of images. The discrete Fourier transform of
images from a stochastic ensemble may be represented as an
array of random complex-valued coefficients, indexed by
frequency

5(f.' fy) = Xr(fx, fy) + ixi(f., fy). (19)

For ensembles that are Gaussian in the space domain, X(fx,
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fy) and Xi(fX, fy) are independent Gaussian random variables
whose variance is given by 1/2 the power at the frequency (,
fy):

,(f, fr)' = E[X(fx, fr)'] = E[Xi(f., f,)'] = '/.P(fx, fy)

(20)

The sample power spectrum of an image is given by

P,(f., fy) = Xr(fx, fy)2 + X(f, fy)2 (21)

and is itself a random process. When Xr(fx, fy) and X(hj fy)
are Gaussian, Ps(f, fy) has an exponential distribution given
by

1 r -Pa-(fy~f)1
[P Iy) I ,f) exp[ I. (22)

The power spectrum of the ensemble is the mean of the
sample power spectra of images in the ensemble and is given
by

P(fx, y) = E[Ps(fX, fy)] = 2o(fx, fy)2, (23)

which confirms the relation given in Eq. (20). Because the
ensembles that we consider are isotropic, we will replace the
two-dimensional frequency pair (fA, fy) with radial frequency
fr = (2 + f 2)1/2 . Sums and products, when given, are taken
over all (fr, fy) pairs. This will simplify notation somewhat.

For ensembles of fractional Brownian motion, the power
spectrum is given by the inverse power law

P(fr) = k* (24)

Using Eq. (23) and substituting into Eq. (22), we obtain

P[Ps(fr)fl3, k] = k-lfrO exp[-P,(fr)k-'frO]. (25)

The likelihood function for a given sample power spectrum
is given by

p(Pj1l, k) = H k-frl exp[-P(fr)k-fr1], (26)

since the Ps(fr) are independent random variables. The log
likelihood function is given by

L(PsI10, k) = - log(k) + / E log(f) - k'1 Z frPs(r)-

(27)

If the number of Fourier coefficients in the sample is N, Eq.
(27) simplifies to

L(PI/3, k) = -N log(k) + / E log(f) - k'> fErPs(fr)

(28)

We want to find maximum-likelihood estimates of k and /3
given by the maximum of Eq. (28). Differentiating Eq. (28)
with respect to k and setting OL/Ok equal to zero, we obtain
for k

k = frlps(fr). (29)

Differentiating Eq. (28) with respect to A3, setting L/afl
equal to zero, and substituting Eq. (29) for k, we obtain

E log(fr) =

N E flr log(fr)P(fr)

E fr ps(r)

(30)

A numerical solution of Eq. (30) gives the maximum-likeli-
hood estimate of fl.

An alternative approach to estimating the spectral drop-
off is to use a linear-regression method proposed by Pent-
land.'8 The log power of fractional Brownian noise is linear-
ly related to the log radial frequency with the slope given by
i:

log[P(fr)] = -log(k) - log(fr). (31)

He suggests estimating by doing a linear regression on the
log power versus log frequency. This estimate is not equiva-
lent to the maximum-likelihood estimate; however, it is
much faster and provides only a slightly worse estimate.
(The variance of the estimate is slightly greater than that of
the maximum-likelihood estimate.) In the simulations of
the ideal observer presented here, we used the maximum-
likelihood estimator given by Eq. (30).
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