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Contours projected from surface markings provide information for the perception of surface shape. The nature
of this information depends on how the shapes of surface marking are constrained relative to the shapes of the
surfaces upon which they lie. A natural constraint is that of figural regularity relative to the shape of an un-
derlying surface. Such a constraint would be expressed in terms of the geodesic curvature of a marking, with
markings having zero geodesic curvature (geodesics of a surface) being the prototypic regular figures. I pro-
pose a number of forms for a geodesic constraint and present psychophysical evidence from a contour-labeling
experiment that the human visual system implicitly incorporates a geodesic constraint in the processing of re-

flectance contours.

INTRODUCTION

Image contours are particularly effective sources of infor-
mation for the perceptual interpretation of surface shape
and scene structure. One need simply look at the pro-
liferation of line drawings used to represent three-
dimensional (3-D) scenes to be convinced of this. This
observation has resulted in the devotion of an entire body
of work in computer vision to analyzing the information
provided by different types of contour. Research has fo-
cused primarily on self-occlusion contours,’® edges of
polyhedral or piecewise smooth objects,*’® and shadow
contours.®”! Contours that have received relatively little
attention are those formed by the projections of extended
markings on a surface, what Stevens® referred to as sur-
face contours. Such contours are the subject of this
investigation.

Surface contours are contours that project from intrinsic
markings on surfaces, where intrinsic markings are taken
to arise from physical processes acting on a surface inde-
pendent of the viewing and the lighting geometry. Ex-
amples of intrinsic surface markings are sharp changes in
surface reflectance and surface cracks.”* Examples of
nonsurface markings are self-occlusion boundaries (de-
pendent on the viewing direction) and shadow boundaries
(dependent on the lighting geometry). For the purposes of
this paper, a further distinction is made between surface
markings and texture markings upon a surface. Surface
markings are extended markings upon a surface, while
texture markings are characterized by having small spa-
tial extents relative to the scale of smooth undulations of a
surface. Much research has been done on the visual in-
terpretation of shape from texture,**" and this problem is
not considered here.

Any reasonably strong inference of surface shape from
surface contours must derive from prior assumptions
about how the shapes of surface markings are constrained
relative to the shapes of the surfaces on which they lie.
Following the lead of other computational studies in vi-
sion, one could analyze the physics of how markings are
formed on surfaces to derive what these constraints are.
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As Stevens'? has pointed out, however, the wide range of
different physical processes that underlie the formation of
surface markings effectively precludes such a study. On
the other hand, we can use the insights gained from phe-
nomenal observations of the human perceptual interpre-
tation of surface contours along with some geometric
intuition to generate hypotheses about what assumptions
the human visual system incorporates in its processing of
surface contours (which may not, of course, correspond to
the constraints that exist in the real world). Having gen-
erated such hypotheses, one can perform psychophysical
experiments designed to test their validity as models of
human perceptual processing. This is the strategy fol-
lowed in this paper.

Section 1 presents the motivation for and a theoretical
analysis of a constraint that I propose is used by the visual
system in the interpretation of surface contours. A par-
ticular goal in this section is to formulate a constraint
that unifies two different approaches that have been taken
to inferring shape from surface contours: one focusing
on the interpretation of surface shape from contours pro-
jected from smoothly curved surfaces'>'®*® and the other
focusing on the interpretation of surface orientation from
contours projected from planar surfaces.?>** In Section 2
are presented the results of psychophysical experiments
designed to test directly the validity of the proposed
constraint.

1. PARTI: COMPUTATIONAL ANALYSIS

The primary body of phenomenal evidence relating to the
visual interpretation of surface contours comes from the
appearance of various types of line drawing, as in Fig. 1.
Stevens'? has suggested that the visual system interprets
the contours in such drawings as surface markings whose
curvature is entirely, or mostly, attributable to the curva-
ture of the underlying surfaces; that is, when possible, the
contours are interpreted as geodesics of a surface. In the
drawings shown here, with the exception of Fig. 1(f), this
appears to be at least qualitatively accurate.
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(b) (e)

(c) (f)

Fig. 1. Examples of line drawings that suggest 3-D surface
shapes. (a) Sets of parallel contours are interpreted, as lines of
curvature upon a cylindrical surface. (b) Pairs of contours are
often used to depict a doubly curved surface. The top pair sug-
gests an elliptic surface, while the bottom pair suggests a hyper-
bolic surface patch. The validity of such interpretations depends
on an assumption that the contours project from curves that are
both geodesic and lines of curvature on a surface. (c), (d) Non-
parallel, geodesic contours also strongly suggest the curvature of
surfaces. (e) Contours need not be geodesic to suggest surface
shape. Contours formed by planar sections of a surface are also
a common device used to depict surface shape. Note that the
shading of the contours in the image has been adjusted to remove
any shading cue caused by the relative compression of contours.
(f) The skew of planar figures can induce a percept of oriented
surfaces in three dimensions.

In his research on analyzing the geometric constraints
necessary to infer surface-shape properties from surface
contours, Stevens drew particular motivation from figures
such as Figs. 1(a) and 1(b), in which we seem to interpret
the contours not only as geodesic but also as lines of curva-
ture on their underlying surfaces. Using this constraint,
he developed a detailed model for the accurate estimation
of surface shape from sets of parallel contours [Fig. 1(a)].
The parallelness of a set of contours implies, under a gen-
eral position argument, that the underlying surface is
cylindrical. The assumption that the contours project
from lines of maximal curvature on the surface then
affords a solution for the surface shape up to one degree of
freedom (corresponding to the global slant of the surface
away from the line of sight). A line-of-curvature assump-
tion also seems necessary for us accurately to infer, as we
seem to, the local Gaussian curvature of a surface under-
lying intersecting pairs of contours, as in Fig. 1(b).

In general, the two constraints proposed by Stevens,
that contours are interpreted as geodesics and that they
are interpreted as lines of curvature, are not consistent,
since lines of curvature are not generally geodesic. Where
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the two coincide is along lines of local surface symmetry
(e.g., lines of curvature on cylindrical or spherical sur-
faces); thus our perceptual interpretation of figures such
as Figs. 1(a) and 1(b) appears to be consistent with both
constraints. On the other hand, Figs. 1(c) and 1(d), which
were generated by drawing geodesics that are not lines of
curvature of the underlying surfaces, also evoke strong
percepts of surface shape. This suggests that perhaps a
geodesic constraint is the more reasonable of the two pos-
sibilities as a general model of which constraints are incor-
porated into the human perceptual processing of surface
contours. That the percept of surface shape evoked by
the contours in Figs. 1(a) and 1(b) also matches a line-of-
curvature constraint suggests that, when possible, the
visual system imposes an additional constraint on top of a
geodesic constraint. The additional constraint could be
said to be either an assumption that surface markings are
lines of curvature or an assumption that they are planar,
since planar geodesics are, in fact, lines of curvature.?? I
prefer the latter description, because it provides for more
economy of description within a general theory of surface-
contour interpretation. The remainder of this section is
devoted to the analysis and the development of a general-
ized geodesic constraint.

First I analyze how a strict assumption of geodesicity
constrains the interpretation of surface shape from con-
tours. I then use Figs. 1(f) and 1(g) to motivate a softer,
generalized formulation of the constraint.

A. Strong Geodesic Constraint

One way to characterize the strategy used to interpret
line drawings such as those in Figs. 1(a)-1(d) is to note
that the visual system attributes all the curvature of the
contours to the curvature of the underlying surface.
Geodesics may be defined as those curves upon a surface
whose curvature is entirely attributable to the curvature
of the underlying surface; that is, those curves that have
no curvature added to that imposed by the surface upon
which they lie. Examples are straight lines, which are
geodesics of planar surfaces, and the great circles of a

Fig. 2. Schematic of relationships between «, x,, and x,. « is
the curvature of a curve I at a point p upon the surface S. The
curvature vector K of the curve may be decomposed into a compo-
nent in the tangent plane of the surface whose length is given by
the geodesic curvature k, and a component parallel to the surface
normal N whose length is the normal curvature k, of the surface
at the point p traversed in the tangent direction ¢ of the curve.
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Fig. 3. Geometry for the derivation of the curvature-constraint
equation. C is a contour projected from a curve upon a surface.
N is the projection of the surface normal onto the image plane,
and ¢ is the tangent of the C. The angle between N and ¢ is 6.

sphere (circles centered on the center point of the sphere),
which are geodesics of the sphere.

These ideas can be formalized as follows?*: Let
T : x(s) = [x(s), y(s), 2(s)]” be an arbitrary curve upon a
surface S. The curvature vector of I' at a point p may be
decomposed into two orthogonal components, one in the
direction of the surface normal N and one in the tangent
plane of the surface T,(S) (Fig. 2). The magnitude of the
component in the direction of N is the magnitude of the
normal curvature, |«,|, of the surface in the tangent direc-
tion of I Note that |k,| is an intrinsic property of the
surface.?? The magnitude of the component in T,(S) is
denoted by |«,| and is referred to as the geodesic curvature
of the curve. The total curvature of I' at p is related to k,
and «, by the relation

k? =K + K1 o)

Since the magnitude of curvature of any curve passing
through a point in a given direction is constrained to be
no less than |«,|, we say that x, reflects the curvature
imposed on a curve by the surface. The excess curvature
is the geodesic curvature, given by k.. A geodesic is de-
fined by the condition that kx, = 0 everywhere along its
length; thus, at each point along a geodesic, it is the
straightest possible curve passing through the point in its
tangent direction. It also follows that the normal to the
curve at a point is parallel to the surface normal at the
point. This characteristic of geodesics, along with the fact
that a geodesic’s curvature is equivalent to the normal
curvature of an underlying surface, leads us to character-
ize geodesics as having locally the same shapes as their
underlying surfaces.

The formulation of the constraint imposed on surface-
shape interpretation by contours projected from geodesics
follows immediately from the equivalence between the
local shape of a geodesic curve and the local shape of the
surface upon which it lies. It is the same as the con-
straint imposed by a contour on the 3-D shape of the curve
from which it projects. Assuming orthographic projec-
tion, the constraint can be expressed as an equation re-
lating the contour curvature x to surface orientation and
normal curvature:

sin 0 sin o (cos? o + sin? o cos? 6)
’

2

K= —Kn 5
cos® o
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where the normal curvature «, is computed in the tangent
direction of the curve. 6 is the angle between the projec-
tion of the surface normal in the image plane and the
tangent direction of the contour (the tilt of the surface
relative to the tangent direction of the contour), and o is
the slant of the surface out of the image plane. The
geometry is summarized in Fig. 3.

Although Eq. (2) reduces by only one the number of de-
grees of freedom needed to describe the local shape of a
surface at a point,2® it leads to a number of qualitative
constraints on the relationship between the contour shape
and the surface shape. The first of these links the sign of
curvature of a contour to the sign of curvature of the
underlying surface:

Constraint 1
The surface underlying a contour projected from a geode-
sic curves in the same direction as the contour.

Figure 4 illustrates the constraint. If the projected sur-
face normal points inward toward the curve, then the sur-
face’s normal curvature in the tangent direction of the
contour is negative. If it points outward from the curve,
the surface’s normal curvature in the tangent direction of
the contour is positive.

A second constraint applies to the position of inflection
points in a contour and can be derived by setting Eq. (2)
equal to zero:

Constraint 2
If p. is a point on a contour C at which x = 0 (generically,
an inflection point of C) and p is the corresponding point
upon a surface from which p projects, then, under the as-
sumption of a general viewpoint, the surface shape at p
matches one of the following two criteria:

1. The tangent direction of C, (x}y'), is an asymptotic
direction of the surface (k, = 0).

2. The tangent of C is parallel to the direction of sur-
face tilt; that is, the projection of the surface normal onto
the image plane (sin 6 = 0).

Local contour information in a static image does not
uniquely determine which of the two criteria given above
leads to the occurrence of an inflection point. However,
the first condition is distinguished from the second by the
fact that only at points matching that condition is the cor-
respondence between p and p. stable to small perturba-
tions of the projective mapping, such as would be caused
by rotational motion of the observer or of the surface.

NZESNVES

N

Fig. 4. Qualitative constraint on surface curvature and orienta-
tion imposed by a contour known to project from a geodesic. nis
the contour’s normal vector, N is the projection of the surface
normal into the image, and «, is the surface’s normal curvature
computed in the tangent direction of the contour.
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Rotations would cause inflection points in a contour re-
sulting from the second condition to slide along the sur-
face, whereas inflection points resulting from the first
condition would move rigidly with the object. Inflection
points in contours projected from geodesics of developable
surfaces are particularly informative about surface shape,
since inflection points that result from the first condition
correspond to planar points of such surfaces (except in the
degenerate case when the contour projects from a surface
ruling and is therefore necessarily straight).

B. Softening the Geodesic Constraint

Figures 1(e) and 1(f) show two examples in which surface
contours are not interpreted as geodesic but do provide
information used by the visual system in the interpreta-
tion of surface shape. Figure 1(e) is an example of con-
tours created as multiple planar sections of a circularly
symmetric sine function. Figure 1(f) shows an example
in which the skew of a curved (nongeodesic) figure upon a
planar surface is used as information for the interpreta-
tion of surface orientation. In this subsection I discuss
how the geodesic constraint could be generalized to be
consistent with such phenomena.

Todd and Reichel®” studied line drawings such as the
one shown in Fig. 1(e) and showed that contours formed by
such planar sections of surfaces can provide strong cues for
the interpretation of surface shape. How can we recon-
cile this with the hypothesis of a geodesic constraint?
One way to do so would be to note that the qualitative
application of both constraints would lead to the same pre-
dictions of perceived surface shape. In particular, con-
straint 1, derived above for geodesics (that the relative
sign of contour curvature and surface tilt determines the
sign of surface curvature), holds for planar sections of
surfaces as well, with the following caveat: For planar
sections, the sign of the relationship between contour cur-
vature and surface curvature may be reversed, depending
on the orientation of the plane used to slice the surface.
Along each contour, however, the sign remains fixed; thus
inflection points in the contours are constrained to occur
when a contour runs in an asymptotic direction of a sur-
face. The qualitative shape predictions of the two con-
straints are therefore effectively equivalent.

While a qualitative application of a geodesic constraint
generalizes well for handling contours projected from
planar sections of surfaces, it could not explain such phe-
nomena as the type of planar orientation from contour il-
lustrated in Fig. 1(f). Computational accounts?®-22 of the
phenomenon amount to the application of some form of
figural regularity constraint in the interpretation of sur-
face orientation. These models estimate surface orienta-
tion so as to extremize some measure of regularity (e.g.,
symmetry or curvature variation) applied to the depro-
jection of a contour onto a surface. They would, for ex-
ample, interpret ellipses as circles on an oriented plane.
Psychophysical studies have confirmed the psychological
relevance of such ideas for the perception of surface orien-
tation from texture, showing, as they have, that the local
shapes of texture contours can be stronger cues than tex-
ture density and size gradients in determining perceived
surface orientation.?®*

The combination of insights gained from the useful
qualities of a geodesic constraint and a figural regularity
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constraint in the interpretation of surface contours leads
to the formulation of a generalized version of both con-
straints in which figural regularity is measured in terms
of the geodesic curvature of a surface. Examples that
form the basis of our psychophysical investigation are two
measures of the variation in a figure’s geodesic curvature:
the variance of geodesic curvature, given by

2
j Kkg(s)’ds J; Kg(s)ds

Var(xg) = == r7 i ®3)

which is related to a measure of planar figural regularity
proposed by Weiss,?” and the integral of the squared deriva-
tive of geodesic curvature, given by

2
Int(k,) = L [""‘é;s(s’] ds, @

the latter of which is a generalized version of a figural
regularity measure proposed by Barrow and Tenenbaum.?
I refer to the two measures as the variance and the inte-
gral measures of geodesic regularity. Weiss provides a
good discussion of the relative computational merits of the
two types of measure in the context of planar figures, and
the interested reader is urged to read his account.

Consistent with the observations that contours projected
from geodesics of a surface are particularly effective in
evoking shape percepts is the fact that both regularity
measures are minimized for geodesics (as well as curves
of any constant geodesic curvature). Furthermore, when
a surface is known to be planar, the measures reduce to
those proposed for planar figural regularity. The use of a
geodesic regularity measure has the further advantage
over a strict application of a geodesic constraint that it
may be directly implemented in a working system that
must integrate information from many different cues to
surface shape. 3%

2. PARTII: PSYCHOPHYSICS

Does the human visual system incorporate a geodesic con-
straint in the perceptual processing of surface contours?
As we have seen, contours projected from geodesics are
effective in eliciting accurate percepts of surface shape;
however, this is not conclusive evidence for the hypothesis.
It seems clear that the visual system does not assume the
strong form of geodesic constraint: that all surface mark-
ings follow geodesic paths. Does it, however, incorporate
a soft geodesic constraint similar to those incorporated in
the geodesic regularity measures I have proposed? The
phenomenal observations just alluded to do not resolve this
question. In this part of the paper I present psychophysi-
cal experiments designed to test the hypothesis that the
visual system assumes some form of geodesic regularity
constraint on surface contours. In particular, we consider
the case of reflectance contours formed by the projection
of discontinuous changes in the reflectance of a surface.
An important aspect of any quantitative study of
surface-contour processing is that naturalistic images be
used as stimuli, so that the contours on which subjects
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(c)

Fig. 5. Differently shaped stripes painted over the same shading
pattern evoke different shape percepts. In this case shading pat-
tern (a) only ambiguously determines the shape of the underlying
surface. It could be two bumps illuminated from behind the
camera, as in (b), or it could be four bumps illuminated from
above, as in (c). The shapes of the reflectance contours in (b)
and (c) determine the perceptual interpretation.

base their perceptual judgments are formed by the same
types of luminance singularity as found in real images.
What little research has been done on the problem of
surface-contour interpretation has relied on the use of line
drawings, as exemplified by the phenomenal demonstra-
tions in Section 1. The extent to which such results gen-
eralize to contours in natural images is unclear. Figure 5
shows that some of the effects obtained for line drawings
of surface contours do generalize to a more naturalistic
image, in which the contours are formed by sharp changes
in surface reflectance. We might expect, however, that
studies that rely on line drawings would underestimate the
role played by surface contours in shape perception, since
any configuration of contours in a line drawing must be a
strong enough cue for shape to jump start the shape-from-
contour system in the first place.

The use of naturalistic images has its drawbacks. In
particular, such images contain a multitude of cues for
surface shape besides surface contours, so that any effec-
tive study of the effects of surface contours on shape per-
ception would have to be done in the context of cooperative
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interactions between the contour information and other
shape cues (e.g., shading). In the experiments presented
here, I avoid this problem by using a contour-labeling task
to probe the constraints imposed by the visual system in
the interpretation of reflectance contours. In the task,
subjects are asked to report the physical cause of a set of
contours in an image. Since such a task involves a small
number of discrete choices about the global labeling of a
contour, we can easily isolate the effect of changes in the
geodesic regularity of a contour on subjects’ performance.

The specific task was one in which the subjects were
asked to label closed contours in rendered images of a
surface as either reflectance contours projected from the
surface or the occluding contours of a transparency placed
between the viewer and the surface. I refer to the first
type of labeling as a reflectance contour labeling and to
the second as a transparency contour labeling. Figure 6
shows examples of the type of stimulus used in the experi-
ments. In both images the interpretation of the middle
darkened patch is ambiguous: it could result from a
change in reflectance on the vaselike surface or from a
second transparent surface floating over the surface.
The geodesic regularity hypothesis makes a clear predic-
tion about how human beings will label such patches: all
other things being equal, greater geodesic regularity of
the bounding figure of a patch relative to the background
surface will produce greater proportions of reflectance
contour judgments.

Two experiments were done to investigate the effect of
contour shape on the labeling of contours as reflectance
contours or as transparency contours. The first experi-
ment may be considered preliminary in the sense that it
was designed simply to determine whether any such effect
could be obtained as well as to illuminate the types of
strategy used by subjects to perform the task. The second
experiment was designed to isolate the effect of contours’
geodesic regularity on labeling judgments. Since the
method of stimulus generation and the experimental pro-
cedures were the same for both experiments, I describe
them before going into the specifics of each experiment.

A. General Methods

1. Stimuli

Each stimulus image used in the experiment was created
by a nonlinear combination of a pair of base images. The
first image of a pair was a shaded image of a surface
created by computer rendering of a 3-D object model. I

(a) (b)
Fig. 6. Examples of the stimuli used in the experiments.
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refer to this image as the surface image for a stimulus.
The second image was a binary image representing the
closed region in the stimulus image in which a patch was
to be painted. This image took on a value of 1 inside the
patch region and 0 outside it. This image is referred to
as the patch image for a stimulus.

Stimuli were constructed from pairs of surface and
patch images by using the following formula for pixel
intensities:

I(x,y) = 7 I,(x, »)L,(x,5) + 255pL,(x, y)
+ [1 - Ip(xi y)]IS(x7 .)'), (5)

where I, (x, y) is the binary value of pixel (x, y) in the patch
image and I,(x, y) is the intensity of pixel (x, ) in the sur-
face image. The parameters T and p may be interpreted,
respectively, as the transmittance and the reflectance of a
transparent filter placed over the surface® or as parame-
ters specifying a change in the reflectance properties of
the surface. To maintain consistency with their interpre-
tation as parameters of a transparent surface, = and p as
well as their sum 7 + p must be less than 1. The values
used for these parameters in the experiments conformed
to this constraint.

Surface images were generated by 3-D rendering of
polygonized models of smooth surfaces. The surfaces
were modeled as having matte reflectance and were illu-
minated by both a point source at infinity and an ambient
light. The resulting images were downsampled, with av-
eraging, by a factor of 3, to provide some antialiasing of the
surface borders. The specific details of the surface and
the lighting models used for each experiment are given in
the individual methods subsections. The methods of
constructing the patch images differed for the two
experiments; therefore, they too are described in the indi-
vidual methods subsections. The background luminance
of the display was fixed at a midgray of 33 cd/m2

2. Apparatus -

Surface and patch images were generated on a Stellar
GS1000 computer. The surface images were rendered by
using Stellar’s Automatic Visualization System. An
Apple Macintosh IIX workstation was used to run the ex-
periments. Stimulus images were created by combining
surface and patch images dynamically during an experi-
mental run and were presented on the workstation’s 8-bit
color display monitor. The nonlinearity of the screen
(y = 2.05) was corrected through modification of the
lookup table. The correction lowered the effective resolu-
tion of the screen to 7.5 bits. The spatial resolution of the
screen for the viewing distance used in the experiments
(0.5 m) was 0.0477%pixel. The subjects viewed the screen
monocularly through a reduction screen that hid the bor-
ders of the display and with their chins resting on a chin
rest. They made responses with the workstation’s mouse.

3. Procedure

Subjects were presented with a stimulus image on each
trial and asked to judge whether the dark patch in the
middle of the surface in the image was a reflectance
change on the surface or a transparent surface floating in
front of the surface. Since preliminary studies showed
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that subjects might see a patch as a shadow on the surface,
subjects were asked to record such an interpretation as a
transparency. Subjects were given an unlimited viewing
time and were asked to make their judgments by selecting
one of two icons below the stimulus image, using the com-
puter’s mouse. Figure 7 shows an example display. Sub-
jects in each experiment were split into two equal-sized
groups, one of which was presented with the icons in one
order (left—transparency, right—reflectance) and the
other of which was presented with the icons in the reverse
order (left—reflectance, right—transparency).

Each experiment consisted of multiple presentations of
a set of stimulus images. The trials were organized into
blocks, each of which contained a randomly ordered pre-
sentation of all the images in the stimulus set. To control
for the effects of stimulus presentation order, a different
random number seed was used to control the order of pre-
sentation for each subject in an experiment. Before the
main experiment began, subjects were given one block of
practice trials to accustom them to the task. Subjects’
scores consisted of the number of transparency and re-
flectance judgments made for each stimulus image. The
trials were run in the dark. The time taken to explain
the experimental task and to run through the practice
trials was typically more than 5 min, providing ample
time for the subjects to adapt to the background lumi-
nance of the display.

B. Experiment 1

The first experiment was designed to determine whether
contour shape plays a role in subjects’ labeling of contours
as well as to gain insight into how subjects perform the
task. The contour-labeling task could be subject to three

Fig. 7. Example of the display presented to the subjects in the
experiment. The solid icon was used to indicate a reflectance
judgment, and the icon filled with the cross-hatched pattern was
used to indicate a transparency judgment. After recording a
judgment on a trial, the subjects indicated that they were ready
for the next trial by selecting, with the mouse, the black square
below the two judgment icons.
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types of prior perceptual constraint: one applied to re-
flectance edges, one applied to the occluding edges of thin-
surfaces, and one that is simply the prior bias to see
patches like those in the stimulus images as reflectance
changes or transparent surfaces (presumably fixed for all
the stimuli). Subject to the prior bias, the relative degrees
to which a set of contours matches the constraints on re-
flectance edges and thin occluding edges determine the
frequency of reflectance and transparency labelings.

The subjects were presented with two classes of stimu-
lus designed to optimize the effect of contour shape on
labeling. The first class contained patches whose bound-
ing contours perfectly matched the proposed geodesic
constraint; that is, which projected from geodesics of the
surfaces in the stimulus images. The second class con-
tained patches whose bounding contours were straight;
that is, they were optimized for a putative figural regular-
ity constraint on thin occluding edges. The patches were
painted over surface images by using a multiplicative com-
bination rule [p = 0 in Eq. (5)], so that the luminance rela-
tions across contours were consistent with interpretations
of patches either as neutral-density filters floating over
surfaces or as constant changes in surface reflectance.
For these stimuli, the shapes of patch bounding contours
provide the only information for determining the contour
labeling.

1. Methods

a. Stimuli. Figure 8 shows the stimulus images used
for the experiment. Two different surface models were
used in the generation of the surface images: surfaces of
revolution, whose generator curves were sinusoids of dif-
ferent frequencies, and Monge surfaces,** whose depth
functions were the sums of sines of different frequencies.
I refer to these as vase and crate surfaces, respectively,
according to their qualitative appearance. The details of
the surface and the shading models used to generate the
surface images are given in Appendix A.

Four patch images, two of which had straight bounding
contours and two of which had contours projected from
geodesics of the surface, were generated for each surface
image. One of the straight patches was a square oriented
out of the image plane by the same angle as the surfaces,
while the other was an irregular polygon. A matching
geodesic patch was generated for each of the two straight
patches by tracing geodesics on a surface between the
points over which the corners of the straight patch ap-
peared (see Appendix B for details of how the geodesics
were computed). The geodesics were then projected
into the image plane to create the bounding contours of
the patch.

The combination rule given in Eq. (5), with = = 0.3 and
p = 0, was used to combine the surface images with each
of their corresponding patch images, resulting in 24 final
stimulus images. The dimensions of the projected sur-
faces presented to the subjects were approximately 133 X
133 pixels along the sides, though this varied by small
amounts between surfaces.

b. Procedure. The procedure given in Subsection 2.A
was used to collect subjects’ scores for frequency of
transparency judgments for each stimulus image. Eight
judgments were recorded for each of the twenty-four
stimulus images.
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c. Subjects. Twelve undergraduates from an intro-
ductory psychology class served as subjects for the experi-
ment. Seven subjects were emmetropes, four were myopes
with 20/20 corrected vision, and one was a hyperope with
20/20 corrected vision.

2. Results

Figure 9 shows the percentage of transparency judgments
for each stimulus, averaged across all subjects. An ef-
fect of contour shape is clearly evident in the results for
each of the six surfaces used, with straight patches con-
sistently judged transparent more often than geodesic
patches. Wilcoxon signed-ranks tests for each of the six
surfaces showed the effect of straightness versus geodesic-
ity to be highly significant for all the surfaces (W = 0,
p < 0.005, for all surfaces). The difference in percentage
of transparency judgments between vase (37.2%) and crate
(55.5%) surfaces was also highly significant (W = 3,
p < 0.005).

3. Discussion

The most notable feature of the results is that the subjects
consistently judged straight patches to be transparent
more often than geodesic patches. This suggests an im-
plicit assumption of prior constraints on thin occluding
edges and/or prior constraints on reflectance edges. Un-
fortunately, the results do not answer the and/or question,
namely, which of the two types of edge does the visual
system assume constraints on, or does it assume con-
straints on both? Either of the three possibilities could
explain the data. For example, an assumption that
straight occluding edges are more common than any given
curved edge would, by itself, lead to an increase in
transparency judgments for straight patches. An imple-
mentation of such an assumption is the commonly used
straightness invariant: an interpretation rule stating
that straight edges in an image project from straight
edges in the scene.®® By the same token, an assumption
that geodesic reflectance edges are more common than
any given nongeodesic curved edge would lead to an in-
crease in reflectance judgments (or, equivalently, a de-
crease in transparency judgments) for the geodesic patches,
since the straight patches have bounding contours that
would not have projected from geodesics of the underly-
ing surfaces.

To isolate and test the hypothesized geodesic regularity
constraint on reflectance edges, we need to vary the geo-
desic regularity of patch bounding contours while holding
the figural regularity in the image plane constant. This
is done in experiment 2; however, before moving on to a
description of that experiment, let us note a number of
informal observations obtained through interviews with
the subjects after the performance of the experiment.
These will motivate a further change in the design of the
experiment.

The most significant observation made by the subjects
was that they had a strong bias to see all the patches as
painted onto the underlying surfaces. Often the subjects
reported that they initially based their judgments on how
easily they could switch their perceptual interpretation of
a patch to be transparent. They reported that, as the ex-
periment wore on, these changes in percepts became more
automatic; however, the initial observation raises the
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Fig. 8. Stimuli used in experiment 1. The first two columns in both (a) and (b) contain the straight patches, and the second two

columns contain the geodesic patches.

problem that cognitive factors may have played a strong
role in subjects’ performance. This is further impli-
cated by the fact that most of the subjects spontaneously
reported their detection of the main experimental manipu-
lation, expressing thoughts such as, “You were looking to
see if I saw patches with straight boundaries as trans-
parent more often than patches with curved boundaries,
weren’t you?” The design of the second experiment
speaks to these issues.

C. Experiment 2

In experiment 2, I directly test the predictions made by
the hypothesis that the visual system assumes a geodesic
regularity constraint on reflectance edges. Within the
labeling paradigm being used here, this requires varying
the geodesic regularity of patch bounding contours while
holding the shape of the contours in the image plane fixed.
Two transformations that serve the desired function are
rotations and translations of a patch in the image plane
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relative to a fixed surface. While these transformations
leave the shapes of patch bounding contours unchanged in
the image, they lead to variations in contour shape rela-
tive to the underlying surface, since they change the posi-
tions of the contours relative to the surface. I chose to
use rotations to vary patch orientation relative to a fixed
surface. Measuring the geodesic regularity of the patch
bounding contours in these stimuli as a function of patch
orientation and relating this to subjects’ transparency
judgments provides a direct test of the prediction that de-
creases in geodesic regularity should lead to correspond-
ing increases in transparency judgments.

A further change in the design was made to account for
the problems of cognitive penetration raised in the discus-
sion of the first experiment. In this experiment I varied
a new factor in stimulus generation: the value of the ad-
ditive constant p used in combining surface and patch
images [see again Eq. (5)]. Remember that this was held
constant at 0 in experiment 1. Varying the value of p
serves two functions: First, the addition of a second fac-
tor serves to mask the main experimental manipulation
(the different rotations of patches), reducing the possible
influence of cognitive factors. The effectiveness of varia-
tions in p in this regard was nicely borne out in the in-
formal reports given by the subjects after participating in
the experiment (see the discussion of results). Second,
increases in p shift subjects’ labeling bias toward a trans-
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Fig. 10. Mean luminance of a patch manipulated either by vary-
ing the multiplicative constant 7 (A) used in stimulus generation
while keeping p constant at 0 or by varying p ((J) while keeping =
constant at 0.3. The graph shows the percentage of transpar-
ency judgments as a function of patch mean luminance for the
two conditions. When the mean luminance was increased by
varying p, the percentage of transparency judgments increased
dramatically [Friedman two-way analysis of variance: X4 =
37.92,p < 0.0001]. The percentage of transparency judgments
did not, however, increase significantly with increases in 7
[Friedman y*4) = 3.6,p > 0.2].

parency judgment, an effect confirmed by the results of a
supplementary experiment described in Fig. 10. An intu-
itive explanation of the effect is that increases in p make
the patch appear flatter and more opaque by reducing the
luminance contrast within the patch. While the added
constant luminance within a patch is consistent with an
interpretation of the patch as a flat transparent surface
with constant reflectance (when p >> 7, the patch appears
opaque), it has no such clear interpretation as a change in
surface reflectance properties.

1. Methods

a. Stimuli. The image of an eight-bump vase surface
was used for all the stimuli in the experiment (see
Appendix A for an exact specification of the surface
model). Three different patch images were created from
the vertices of a four-sided irregular polygon® in the fol-
lowing way: The vertices were deprojected onto three
different surfaces and connected by tracing geodesics of
the surfaces between the vertices. Each of these curves
was then projected back into the image plane, and the re-
sulting closed regions were filled in to create a patch
image. One of the surfaces used for creating the patches
was the eight-bump surface used in generating the stimuli,
while the other two were four-bump and two-bump vase
surfaces. Each of the three patches was rotated by 0°,
22.5° and 45° in the image plane to generate three sets
of stimuli whose patches all had equivalent bounding
contour shape in the image plane. This gave a total of
nine patches.

The nine patches were combined with the surface image
by using the multiplicative—additive combination rule
given in Eq. (5). Three different additive coefficients
were used, resulting in a total of 27 different stimulus
images. The multiplicative coefficient used was 7 = 0.3.
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(b)

(©
Fig. 11. Examples of stimulus images used in experiment 2
(p =0.0): (a) images created with patch 1, (b) images created
with patch 2, (c) images created with patch 3.

The additive coefficients used were 0.0, 0.15, and 0.3.
Figure 11 shows the nine stimulus images generated with
p=0.

b. Procedure. The procedure given in Subsection 2.A
was used to collect the subjects’ scores for frequency
of transparency judgments for each stimulus image.
Eight judgments were recorded for each of the 24 stimu-
lus images.

c. Subjects. Twelve undergraduates from an introduc-
tory psychology class served as the subjects for the experi-
ment. Eight subjects were emmetropes, and four were
myopes with 20/20 corrected vision.

2. Results

I computed both the integral [Eq. (4)] and the variance
[Eq. (3)] measures of the geodesic regularity of patch
bounding contours for comparison with subjects’ labeling
judgments. These are listed in Table 1 for each of the
stimuli used in the experiment (Appendix C details the
method of computing the two measures). As expected,
the values of both measures applied to the patch bounda-
ries of each patch varied as a function of the patch’s rota-
tion angle in the image. Note that only for patch 1 do the
two measures make different predictions about labeling
performance.

Figure 12 shows the percentage of transparency judg-
ments for each patch plotted as functions of both the vari-
ance and the integral measures. The differences in
percentage of transparency judgments, when averaged
across values of p, were highly significant for all three
patches [patch 1: Friedman two-way analysis of vari-
ance, x(2) = 12.41,p < 0.002; patch 2: x%(2) = 14.93,
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p < 0.001; patch 3: x%2) = 14.93,p < 0.001]. For each
of the three patches, the percentage of transparency judg-
ments increased with increases in the variance of geodesic
curvature. The same is true for patches 2 and 3 when the
comparison is made with the integral of the derivative of
geodesic curvature but does not hold for patch 1.
Informal reports of the subjects given after they took
part in the experiment indicate that the addition of the
factor p to the experimental design was successful in
masking the main experimental manipulation of rotating
the patches. When asked what hypothesis was being
tested in the experiment, all the subjects guessed that I
was looking for an effect of patch lightness on performance.

3. Discussion

The results support the hypothesis that the visual system
assumes a geodesic regularity constraint on reflectance
edge shape. The variance of geodesic curvature provided
a better predictor of the ordinal ranking of the subjects’
transparency labelings than did the integral measure;
however, the quantity of data collected in the experiment
is not large enough to permit us to test the relative perfor-
mances of the two measures as models of the constraint
incorporated in visual system processing.

A number of caveats should be made concerning the in-
terpretation of the results. The first regards an implicit
assumption made in the analysis, namely, that the shape
of the surface in the stimulus images was perceived cor-
rectly and did not vary with variations in patch geometry.
Presumably, any constraint on reflectance edge shape ap-
plied by the visual system would be applied relative to the
perceived shape of the surface; thus exact predictions of
performance would require an accurate estimate of the
perceived surface shape and the geodesic regularity of
patch bounding contours relative to that shape. The use
of a highly symmetric and regular surface was an attempt
to minimize any differences in actual and perceived
shape, and I suspect that, at the least, the qualitative as-
pects of the shape (e.g., that it was a surface of revolution,
where the bumps and valleys were, etc.) were accurately
perceived.

A second caveat has to do with an aspect of contour
shape that may have played a role in labeling but that was
not considered here: the angles formed by the vertices in
patch boundaries. A number of researchers have sug-

Table 1. Variance of Geodesic Curvature and
Integral of Squared Derivative of Geodesic
Curvature Measures Applied to Each of the Nine
Patches Used in Experiment 2

Patch Number Rotation (°) Var(k,) Int(x,)

1 0 11.42 1.34
22.5 11.6 0.89
45 13.18 191

2 0 12.72 1.15
22.5 13.0 1.75
45 14.63 2.2

3 0 0.02 0.08
22.5 16.24 1.16
45 21.5 2.38
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Fig. 12. Percentage of transparency judginents in expe;'iment 2 plotted for each of the three patches as functions [(a), (c), (e)] of the vari-
ance of geodesic curvature of a patch’s boundary and [(b), (d), (f)] of the integral of the squared derivative of geodesic curvature of a

patch’s boundary.

gested that the visual system assumes that corners of sur-
face markings tend toward being perpendicular.
constraint may have played some part in determining the
subjects’ labeling; however, I think that the contribution

12

of the constraint in this experiment was small.

Such a

D. General Discussion
I have presented psychophysical evidence that the human
visual system assumes some form of geodesic regularity
constraint in the interpretation of reflectance contours.
Previous studies relating to the problem, specifically those
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(a) P Eb

Fig. 13. Variants of the images shown in Fig. 5 in which both
occluding contours and reflectance contours are present.

of Stevens'? and Todd and Reichel,?” relied on phenomenal
demonstrations of perceived shape from line-drawing
images in their development. In this, they differ from
the more directed set of experiments using naturalistic
images presented here. As pointed out in Part I of this
paper, however, the assumption of a soft geodesic con-
straint is consistent with the type of phenomenon investi-
gated by these researchers.

A number of considerations are important in the gener-
alization of the present results. The first is that the
stimuli used in the experiments were images of particu-
larly simple types of surface, of the type that characterize
our artifactual environment. This raises the possibility
that the perceptual processes tapped into in the experi-
ment were specialized for the interpretation of such sur-
faces. The possibility takes on more weight when one
considers that the physical processes that underlie the
creation of surface markings on artificial objects are
ones that are likely to adhere to some sort of regular-
ity constraint.? To test whether surface-contour con-
straints are general or more special purpose in the sense
described here, further studies with irregular objects
are required.

A second consideration is that some form of regularity
constraint other than one based on the geodesic curvature
of figures might predict the results. Though this could
certainly be true, the geodesic constraint seems to be the
most parsimonious and general predictor of a range of
phenomena, including those cited in Part I of this paper.
In this regard further tests of the geodesic constraint are
needed. In particular, experiments need to be done
to investigate the contribution of surface contours to
shape perception per se. The contour-labeling paradigm
used here does not provide a direct look at what would
be the most significant functional role of the constraint:
to support the interpretation of surface shape. Though
line-drawing studies do focus on this aspect of surface-
contour processing, I believe that more-naturalistic
stimuli, as used here, should supplant the use of line draw-
ings in quantitative studies of the perception of shape
from contour.

1. Interaction with Other Cues

The weakness of the geodesic constraint as the sole deter-
minant of surface shape suggests the importance of inves-
tigating the interactions between surface contours and
other sources of information such as shading and texture
in shape perception. An example of a seemingly compa-
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rable source of information is that provided by surface
discontinuities, such as the occluding contours of a thin
surface. Such contours are well-known strong cues for
surface shape?®3"%, yet, just as with reflectance contours,
strong assumptions about the shapes of the edges from
which they project are needed for the inference of surface
shape. Figure 13 shows images of two surfaces in which
the shapes of the reflectance and the occluding contours
provide conflicting evidence for surface shape. To this
author, the shapes of the surfaces appear to follow the low-
est frequency suggested by either of the contours, though
they are both somewhat bistable. Clearly the interaction
between the two types of contour is not a simple one and
requires a more detailed investigation.

2. Surface Contours and Surface Creases

In this paper I have focused on surface contours that
project from smoothly curved regions of a surface. Let us
briefly discuss here the problem of how the visual system
interprets surface contours at points where they intersect
surface-crease contours (contours projected from disconti-
nuities in surface orientation, such as the corners of a
box). Figure 14 shows that the visual system does use the

{c)
Fig. 14. Parallel stripes (a) take on the appearance of a folded
surface when reflectance contours have tangent discontinuities
at the luminance edges (b) and (c). The perceived degree of a
surface’s fold depends on the angle formed by the discontinuity in
the reflectance contours. The effect does not depend on the con-
tours being straight from the surface creases (c).
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information provided by the behavior of surface contours
at intersections with surface-crease contours in its inter-
pretation of surface shape. Unlike for surface contours
on smooth surface regions, however, an analysis of the be-
havior of surface markings at intersections with surface
creases in the real world does lead to the formulation of an
ecologically valid constraint that can be applied to contour
interpretation.

Consider the case of creases formed by folding a devel-
opable surface (a surface that can be created by bending,
without stretching or compressing, a flat surface). Any
markings that intersect such a crease will necessarily
have a discontinuity in their tangent directions. More-
over, the angle through which a marking’s tangent is taken
by this discontinuity is determined by the way in which
the surface was folded at the crease. Let us specify the
applicable constraint in the following way: Define a
pseudosurface normal vector N, at the crease as the bisec-
tor of the surface normals at either side of the crease:

N*+ N~

N RN

6)

where N* and N~ are the surface normals immediately to
either side of the crease at a point. Similarly, for a discon-
tinuity in a curve’s tangent, we can define the pseudonor-
mal vector n, of the curve as the bisector of the tangent
vectors of the curve at either side of the discontinuity:

n, = )

o+
+

Sk >

i
where t* and ¢~ are the unit tangent vectors of the curve
as the discontinuity is approached from either side.
Where a surface marking intersects a surface crease
formed by folding a developable surface, the pseudonormal
of the marking is constrained to be parallel to the
pseudonormal of the surface crease; that is, n, = =N,
(note the similarity to a geodesic constraint for smooth
surfaces). The constraint does not require that a surface
marking be straight in the neighborhood of a crease, just
that it be smooth.

The phenomenal appearance of the surfaces in Fig. 14
suggests that the visual system does assume something
similar to the pseudonormal constraint in interpreting
surface contours at intersections with surface-crease
contours.

| >

E. Summary

Surface contours provide information that the visual sys-
tem uses in the interpretation of surface shape. I have
analyzed the information provided by such contours under
the assumption that the contours project from geodesics
of surfaces and have proposed a generalized, soft version
of a geodesic constraint that could apply to the interpre-
tation of nongeodesic contours. Psychophysical results
based on contour labeling that are consistent with the hy-
pothesized constraint have been presented. Taken to-
gether with phenomenal observations on the effectiveness
of geodesic contours as cues for surface shape, these re-
sults lead to the conclusion that the visual system applies
some form of geodesic constraint in the interpretation of
surface contours. I also considered the information pro-
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vided by surface contours at intersections with surface-
crease contours and showed that, for a special class of
surface creases formed by folding developable surfaces,
the behavior of surface markings was lawfully constrained
in a manner similar to that of geodesics on smooth sur-
face patches.

APPENDIX A: SURFACE MODELS

This appendix summarizes the surface and the shading
models used in generating the surface images for experi-
ments 1 and 2.

The crate surfaces used in experiment 1 were modeled
as graphs of the function Alcos(@wf,u + ¢.)cos2mf, +
¢,)] parameterized as

u
X(u,v) = v
Alcos@mf,u + ¢,)cos@mf,v + ¢y)]

(OS u<xmax,OSv< ymax)9 (A]‘)

where Xmax and Y., specify the width and the height of the
surface and 2A is the maximum depth difference between
peaks and troughs in the surface, the frequency parame-
ters f, and f, determine the bumpiness of the surface, and
the phase parameters ¢, and ¢, determine the positions
of the bumps. Table 2 summarizes the parameters used
to generate the three different crate surfaces used in
experiment 1. ,

The vase surfaces used in both experiment 1 and
experiment 2 were modeled as surfaces of revolution with
a sinusoidal generating curve, parameterized as

%o — [R + A cos@wfv + ¢)cos u]
X(u,v) = v
R + A cos@wfv + @)sin u

O=u<2m0=<v< Ynx), (A2)

where x, is the point at which the axis of revolution inter-
sects the x axis, the width of the surface at its widest point
is given by 2(R + A), and the height is given by ¥max. The
frequency parameter f determines the bumpiness of the
surface, and the phase parameter ¢ determines the posi-
tions of the bumps. Table 3 summarizes the parameters
used in generating the vase surfaces for experiments 1
and 2.

Polygonized models of the surfaces were rendered in the
Automatic Visualization System on a Stellar GS1000.
Each crate surface was rotated by —10° about the x axis
(the 2z axis was negative in the direction of the model cam-
era), —15° about the y axis, and —45° about the z axis, in
that order, and each vase surface was rotated by —10°
about the x axis and —45° about the z axis. Surfaces were
shaded by using a Phong shading model, the parameters of
which are given in Table 4.

APPENDIX B: COMPUTING GEODESICS

The geodesics of a surface S may be defined in the follow-
ing way: Let S C %° be represented by a parameteriza-
tion, X:U C R?% — S, where a point on S is given by X(z,v).
A geodesic of S is given by a curve X[u(s),v(s)] that
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Table 2. Surface Parameters for Crate Surfaces

Xmax Ymax A fu fo bu ¢y
400 400 100 0.0025 (1 cycle/surface) 0.0025 (1 cycle/surface) T T
400 400 500 0.005 (2 cycles/surface) 0.005 (2 cycles/surface) b T
400 400 25 0.01 (4 cycles/surface) 0.01 (4 cycles/surface) 0 T

satisfies the pair of second-order nonlinear differential
equations

u + Tnl)? + 2Tey + D)2 = 0, (BY
u + Tp?@w)? + 2T2u’ + Tp2(w)2 = 0, (B2)

where the I} are the Christoffel symbols for the surface
defined at each point (z,v) by the system of equations

T'(X, Xu) + T?(X, Xo) = Kuws Xu), (B3)
Ta'X., X)) + M*X,, X,) = (X, X0), (B4)
2" (X, X)) + T%X, X)) = X, Xu), (B5)
DX, X)) + T%X,, X,) = (X, Xo), (B6)
D2 Xo, Xo) + DX, X)) = (X, Xu), B7)
D' X, X,) + DX, X)) = (X, Xo0). (B8)

For a given set of initial conditions (u¢,v) and (u¢',vy),
the differential equations have a unique solution. The
initial conditions define a point on the surface, X(u,,vo),
and an initial direction in the tangent plane of the surface
at the point, X' = uy' X, (uo,v0) + v’ X, (uo,v0).

For a given initial point and initial direction, the nu-
merical integration of the differential equations specified
in Eq. (B2) provides an estimate of the points along a geo-
desic on the surface. The computation of the geodesic
connecting two points on a surface requires searching
over the space of possible initial directions from one of the
points for the direction whose geodesic will contain the
other point.

The following algorithm was used to generate the geode-
sic patches used in the experiments:

Select a pair of connected vertices in the image, (x, o)
and (xy, yp).
Deproject the vertices onto the surface, using ortho-
graphic projection, to obtain X, and X,.
Determine (uo,v,) by using the inverse map X : S C
R—>U
Search through (u¢’,v,")
Numerically integrate Eq. (B2), using (u,v0) and
(uo',v0") as the initial conditions, to estimate points
X, (u;,v;) along the geodesic.
Until min;(|X; — X;|) < 0.5 pixel unit.

A modified Euler method was used for the numerical in-
tegration of Eq. (B2), in which the discrete step size for
the derivatives was dynamically varied to keep the separa-
tion between the points of the computed geodesic on the
surface below a fixed resolution limit. For the geodesics
used in the experiments, the resolution was very high, en-
forcing the limits |[AX;| < 0.1 pixel unit and |AX;| <
0.1 pixel unit.

APPENDIX C: COMPUTING MEASURES OF
GEODESIC REGULARITY

For each patch image used in the experiments, a fine-
resolution (0.1-pixel-unit) representation of the edges of
the patches was stored for use in calculating the two mea-
sures of geodesic regularity proposed in the text: the
variance of geodesic curvature of the edges [Eq. (4)] and
the integral of the squared derivative of geodesic curva-
ture [Eq. (3)]. The geodesic curvature of an edge at each
point was estimated by using discrete-difference approxi-
mations of the tangent and the curvature vectors of the
edge. The curvature vector was approximated as

At;
k; = A_s, (C1)
Liv1 — b
~ il (C2)
X — Xina)

where ¢; is the tangent vector at a point, approximated by
AX;

t; = As (C3
X1 — X

~ i T Sl Cc4

|Xi+1 - Xi—ll ( )

X, is the position of point i on the surface. The geodesic
curvature at a point was calculated by using the expression

Kg = (tt A Ni,ki>’ (05)

where N; is the unit surface normal at the point, computed
directly from the parameterized surface model.

Both the variance of the geodesic curvature and the in-
tegral of the squared derivative of geodesic curvature of a

Table 3. Surface Parameters for Vase Surfaces
Used in Experiments 1 and 2

Expt. ymax R A %o f ¢

1 400 100 100 200
400 150 50 200
400 175 25 200

0.0025 (1 cycle/surface)
0.005 (2 cycles/surface)
0.01 (4 cycles/surface)

ooy

2 400 175 25 200 0.02 (8 cycles/surface) 0

Table 4. Shading Parameters Used for Rendering
the Two Types of Surface®

Surface Type p Ap Aa L

Crate 1.0 204 51 (0,0.5735, —0.8192)7
Vase 1.0 204 51 (0,05, —0.866)7

“p is the surface reflectance, A, is the intensity of a point source at infin-
ity given in gray-level units, A, is the intensity of the ambient light, and L
is a unit vector in the direction of the light source. Images of the crate
surfaces were generated by using a light source at a 35° slant away from
the viewer. Images of the vase surfaces were generated by using a light
source at a 30° slant away from the viewer.
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patch edge were computed by using discrete sums to ap-
proximate the integrals involved. The estimates are
given by

2

fkg(s)zds J' Kg(s)ds

Var(x,) = - (C6)
j ds j ds
D rghs | X Kghsi|?
~ 2 _ i (C7
Z AS,‘ 2 AS,‘ )
Z Kgi2|Xi+1 - X,l E Kgi|Xi+l - X,' 2
~ - - |- (e}
Z |Xi+1 - Xil Z |Xi+1 - Xil
2
Int(c,) = J[M] ds (C9)
as
~ é'ﬁ)zA - (C10)
: \ As; 5
2
~ 3 ra) (C1D)
7 As;
— 2
(Kgioy = Kg)” | (€12)

T4 X — X

The total measures for a patch listed in Table 1 were com-
puted as the weighted sum of the measures for each side of
the patch:

4
Varr(k) =  A; Vari(kg), (C13)

4 .
IntT(Kg) = 2 A,’ Int,-(Kg) ’ (014)

where A; is the length of side i of the patch and Var;(k,)
and Int;(x,) are the calculated values of the two measures
for side i of the patch.

Both measures were calculated by using a range of
scales for the discrete-difference operations. The values
varied only slightly when calculated over scales ranging
from an approximately 0.1-pixel-unit separation between
points to an approximately 2-pixel-unit separation be-
tween points.
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