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Abstract

Optical texture patterns contain three quasi-independent cues to planar surface orientation: perspective scaling, projective
foreshortening and density. The purpose of this work was to estimate the perceptual weights assigned to these texture cues for
discriminating surface orientation and to measure the visual system’s reliance on an isotropy assumption in interpreting
foreshortening information. A novel analytical technique is introduced which takes advantage of the natural cue perturbations
inherent in stochastic texture stimuli to estimate cue weights and measure the influence of an isotropy assumption. Ideal observers
were derived which compute the exact information content of the different texture cues in the stimuli used in the experiments and
which either did or did not rely on an assumption of surface texture isotropy. Simulations of the ideal observers using the same
stimuli shown to subjects in a slant discrimination task provided trial-by-trial estimates of the natural cue perturbations which
were inherent in the stimuli. By back-correlating subjects’ judgements with the different ideal observer estimates, we were able to
estimate both the weights given to each cue by subjects and the strength of subjects’ prior assumptions of isotropy. In all of the
conditions tested, we found that subjects relied primarily on the foreshortening cue. A small, but significant weight was given to
scaling information and no significant weight was given to density information. In conditions in which the surface textures
deviated from isotropy by random amounts from stimulus to stimulus, subject judgements correlated well with the estimates of
an ideal observer which incorrectly assumed surface texture isotropy. This correlation was not complete, however, suggesting that
a soft form of the isotropy constraint was used. Moreover, the correlation was significantly lower for textures containing
higher-order information about surface orientation (skew of rectangular texture elements). The results of the analysis clearly
implicate texture foreshortening as a primary cue for perceiving surface slant from texture and suggest that the visual system
incorporates a strong, though not complete, bias to interpret surface textures as isotropic in its inference of surface slant from
texture. They further suggest that local texture skew, when available in an image, contributes significantly to perceptual estimates
of surface orientation. © 1998 Elsevier Science Ltd. All rights reserved.

1. Introduction

Since Gibson first analyzed texture gradients [1], it
has been well-known that optical texture patterns can
provide strong cues to surface shape and orientation
(see Fig. 1). We have recently shown, for example, that
subjects can use texture information to discriminate
differences in planar surface slant as small as 1-1/2 to
3°, Others have shown that the visual system gives a
significant weight to texture information for estimating
surface orientation and curvature even with the pres-
ence of conflicting stereo or motion information [2—4].
These observations have made the problem of how
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humans infer 3D surface structure from texture one of
significant theoretical interest.

Texture information is composed of several distinct
cues: perspective scaling, projective foreshortening and
texture density. Each of the cues depends on one or
more well-specified prior constraints for its informative-
ness: homogeneity, the assumption that surface textures
are similar (at least, statistically) everywhere over a
surface, and isotropy, the assumption that surface tex-
tures have no particular orientation bias (again, in a
statistical sense). Two fundamental questions about
human perception of surface geometry from texture
therefore arise: how does the visual system integrate the
available texture cues to make inferences about surface
geometry, and what prior assumptions about surface
textures does it rely on to do so?
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In this paper, we describe experiments and a new
method of analysis designed to measure the relative
contributions of the different texture cues to perceived
surface slant (angle away from the fronto-parallel) and
to measure the strength of a putative isotropy assump-
tion. A number of previous researchers have investi-
gated the same problems; however, due to the
qualitative nature of that work, significant gaps in our
understanding remain. Our hope is that the current
work will serve to close some of these gaps as well as to
introduce a powerful formal methodology which, with
future applications, may further serve to flesh out our
understanding of shape from texture perception.

Our approach is similar in spirit to previous work, in
that it relies on a form of cue perturbation paradigm
[2,3,5—8]. Rather than artificially inducing cue conflicts,
however, we rely for our analysis on the natural cue
perturbations inherent in images of stochastic surface
textures. The recent development of ideal observers for
each of the different texture cues [9-11] allows us to
measure these natural perturbations, which we can in
turn correlate with subjects’ judgements in a slant dis-
crimination task to estimate cue weights, test whether
subjects assume isotropy and so on. Because of the
important role played by the ideal observers, we will
refer to the method as ideal observer perturbation
analysis.

In the current paper, we describe two experiments
and associated analyses designed to measure the
weights given by the visual system to different texture
cues and to measure the strength of the isotropy as-
sumption imposed by the visual system. As part of our
analysis, we will also consider questions of how cue
weights and the strength of the isotropy assumption
change across stimulus conditions. The second section
of the paper provides a brief overview of the structure
of texture cues. The third section introduces the logic of
ideal observer perturbation analysis. The fourth section
applies the analysis to the results of a simple experiment
measuring subjects’ abilities to discriminate surface
slant (orientation away from the line of sight) from
monocular images of planar, isotropic textures. The
analysis provides estimates of the weights given by
subjects to different texture cues for performing the
discrimination task. In the fifth section, we apply the
analysis to an experiment designed to measure the
strength of subjects’ isotropy assumptions. The final
section discusses the results and relates them to previ-
ous psychophysics to draw conclusions about human
processing strategies for estimating planar surface ori-
entation from texture.

2. The structure of texture information

Locally, perspective projection distorts a texture pat-

tern in two distinct ways: by scaling the texture and by
distorting its shape. The ‘size’ of a local texture patch is
scaled by an amount inversely proportional to the
distance of the patch from the nodal point of the eye.
Similarly, the shape of the patch is foreshortened in the
direction of local surface tilt by an amount propor-
tional to the cosine of the slant of the surface relative to
the local line of sight. Both of these effects are first-or-
der approximations of the local perspective distortion
of texture. They vary with spatial position in a pre-
dictable way as a function of surface geometry. For

(b)

Fig. 1. Two examples of texture patterns which elicit strong percepts
of planar surfaces oriented in depth. Each image contains surfaces at
0 and 65° slant. In the experiments described here, subjects viewed
stimuli like these and made judgements of which surface was most
slanted in depth. The patterns in (a) were created by scattering
random ellipses over a surface before projection. The patterns in (b),
which we will refer to throughout the text as Voronoi textures, were
each created from the Voronoi diagram of a random lattice of points
in the plane of the surface, a technique first introduced into shape-
from-texture psychophysics by Rosenholtz and Malik (see [2, 9] for
detailed descriptions of Voronoi textures).
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slanted, planar surfaces, distance from the viewer
changes as a simple function of position in the image.
Local slant and tilt varies over an image as well, since
the angle of the local line of sight changes across an
image. These changes in local viewing geometry result
in spatial variations in the local distortion of a texture
pattern.

The scaling and shape distortion components of the
local texture map (and their ‘gradients’) are not directly
available to an observer, who only sees the effects of
these distortions in the projected image. A-prior knowl-
edge of the spatial structure of surface textures is
needed to infer the form of the local distortion, and
hence the local 3D shape, from image data. Since most
surface textures are stochastic, the best any observer
can hope for is knowledge of the statistical properties
of an ensemble of surface textures. Such knowledge
supports statistical ‘best-guesses’ about the local distor-
tion. The two generic forms of statistical constraints
which can make texture informative are homogeneity
and isotropy. Homogeneity is equivalent to the statisti-
cal concept of stationarity; that the statistics of a
pattern do not change with position on a surface.
Isotropy refers to the lack of any orientation bias in the
statistical structure of a pattern. Generally speaking, a
texture ensemble is isotropic if its statistical properties
can be characterized without regard to orientation.

Perspective projection induces measurable inhomo-
geneities and anisotropies in image texture patterns.
These provide information about the orientation and
shape of a surface. Foreshortening makes the distribu-
tion of texture element shape and orientation decidedly
non-uniform and, in the case of isotropic textures,
non-circular. Perspective scaling renders texture ele-
ments far away from the viewer, on average, smaller
than those closer to the viewer. These observations lead
to a natural decomposition of texture information into
the so-called cues of perspective scaling and foreshort-
ening. Both scaling and foreshortening information re-
quire an assumption of texture homogeneity to be
useful. Foreshortening information, however, can take
two forms with or without an assumption of isotropy.
Without assuming isotropy, an observer would have to
rely on spatial gradients in foreshortening to make
judgements about surface orientation. With it, an ob-
server could make orientation judgements more locally
by measuring the deviation of local texture shape statis-
tics away from isotropy.

Textures composed of discrete elements (texels) admit
a third cue to surface orientation and shape density.
The three texture cues can be made independent by
equating scaling information with the statistical distri-
bution of texel sizes, foreshortening information with
the distribution of texel shape and orientation (defined
in an appropriately scale-independent way [12]) and
density with the distribution of texel positions. This

latter information, for most textures, is not properly
captured in a simple density measure, but rather in the
relative positioning of texels. We will therefore refer to
the information carried by texel positions as position
information, to avoid the possibly misleading semantics
of the term, density.

Since we use discrete element textures in our experi-
ments, we will adhere to the definition of texture cues
given above. More specifically, since we use textures
composed of elliptical texels, we define the image equiv-
alents of the three texture cues to be

Scaling— the spatial distribution of texel lengths.
Foreshortening— the spatial distribution of texel
aspect ratios and orientations.

Position— the spatial distribution of texel positions

What we have defined as foreshortening information
corresponds to the cue most often referred to in the
literature as compression [6,10,13,14]. Some authors’,
however, have defined the compression cue differently,
as the gradient in absolute compression of texture
elements in the direction of surface tilt [2,3]. Compres-
sion defined this way depends on both scaling and
foreshortening effects of projection (and does not admit
a straightforward application of the isotropy con-
straint). Because of the possible confusion inherent in
the use of the term, compression, we will use the term,
foreshortening, to refer to the distortion in texture
element shapes and orientations induced purely by pro-
jective foreshortening.

3. Ideal observer perturbation analysis

3.1. Introduction

In previous work [12], we compared subjects’
thresholds for discriminating planar surface slant from
texture information with the thresholds of ideal observ-
ers for each of the texture cues, using the ideal observer
thresholds as objective measures of the inherent uncer-
tainty contained in the texture cues. The comparisons
allowed us to draw a number of broad, qualitative
conclusions about subjects’ strategies for interpreting
surface slant from texture. The most significant of these
conclusions was that subjects relied at least in part on
foreshortening information to make their discrimina-
tion judgements.

Unfortunately, comparing threshold data between
human and ideal observers, as we previously did and is
typically done [10] is a very blunt tool to use in
analyzing perceptual strategies. It only supports the
type of broad-stroke inference described above. We
should, however, be able to use the ideal observer
models more directly to infer subjects’ perceptual
strategies. In particular, we should be able to correlate
subjects’ discrimination judgements on each trial with
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the stimulus slants derived from ideal observers for each
cue, in order to gain some quantitative insight into how
texture cues are combined for the perception of surface
slant. This would be a form of post hoc perturbation
analysis which relies only on the natural perturbations
inherent in stochastic texture stimuli, as measured by the
perturbations in ideal observer estimates of slant.

3.2. Natural cue perturbations and the linear model

Texture scaling, foreshortening and position informa-
tion provide quasi-independent cues to the orientations
of planar surfaces. The visual system must somehow
combine these information sources to arrive at estimates
of surface orientation. For the classes of textures we are
considering, the optimal way to do this is to compute
likelihood functions for each of the cues and multiply
them together to obtain the full-cue likelihood function
from which estimates of surface orientation may be
derived. When the individual cue likelihood functions
approximate Gaussian distributions, the maximum likeli-
hood estimator for surface orientation from texture
reduces to a weighted sum of the maximum likelihood
estimates for surface orientation from the constituent
cues contained in texture patterns. In this case, we can
write the maximum likelihood estimate of slant, &, as

G = wa, + wop + w0, (1)

where wg, wy ,w, are the weights given to the scaling,
foreshortening and position cues, respectively, and
0..01,0, are the most likely slants indicated by the
different cues. The weights are determined by the relative
variances of the individual cue likelihood functions.

The key observation behind the ideal observer pertur-
bation analysis is that the orientations indicated by
different texture cues for surfaces with a fixed slant vary
randomly from stimulus to stimulus around that slant.
A concise representation of the perturbations is as a noise
process added to the true slant of the surface pictured in
a stimulus,

g,=0+ N, (@)
O'f:O-+Nf (3)
s,=c+N, )

where N, Ny and N, are independent random processes
representing the natural perturbations in surface slant
suggested by the scaling, foreshortening and position
cues respectively.

3.3. Estimating cue weights

One way to estimate the weights in our psychophysical
model would be to fix the slant of a surface and somehow
measure subjects’ perceptions of slant for images of a

large set of textures ‘painted’ on that surface. Correlat-
ing subjects’ perceptual estimates of slant with the
maximum likelihood estimates of slant derived from
each texture cue would provide a measure of the
weights of the different cues. The major problem with
this approach is that any practical method for measur-
ing perceived slant (e.g. gauge figures [8]) is likely to
add significant measurement noise to the estimates of
perceived slant, greatly reducing the sensitivity of the
analysis. Potential non-linearities in the mapping be-
tween perceived slant and reported slant create a fur-
ther complication, since they can produce distortions in
the measured weights.

Rather than attempt to directly measure correlations
between perturbed slants and perceived slants, we esti-
mated the sets of weights which best predicted subjects’
discriminations of surface slant from texture. While
indirect, estimating weights from discrimination data
has the advantage that the experimental task provides a
more sensitive measure of subjects’ judgements of sur-
face slant (albeit differential slant) than do direct mea-
sures of perceived slant. We describe the basic logic of
the analysis here. Details of the variants used to analyze
the current experiments will be given in the sections
describing the experiments.

In a discrimination task, subjects compare two tex-
ture stimuli and judge which of the two has the largest
slant. In the experiments described here, we fixed the
test slant to be 65° and varied the comparison slant to
be greater or less than the test slant. The raw data from
such an experiment consists of data pairs specifying the
differences in slant between comparison and test stimuli
on each trial and subjects’ associated responses. We
model subjects’ discrimination process as being based
on a decision variable, Ag, which is given by

Ao =wAo, +wAo+w,Ac, + N (5)

where w, is the weight given to the scaling cue, wy is the
weight given to the foreshortening cue and w, is the
weight given to the position cue. N is a noise process.
Ag . is the difference in the variance-stabilized slants of
the test and comparison surface suggested by cue x.
Defining subjects’ response on trial i to be

(6)

i

_ |1 comparison slant judged greater
~ |0 test slant judged greater

we can write the probability of a subject judging the
comparison slant to be greater than the test slant on
trial 7 as

pX;=1)=¥(Ao;; 9) (N

p(X;=1)=Y¥Y(wAs, +wio; +w,Aa,; d) 8

where W() is a psychometric function and & is a vector
of the parameters which define the shape of the psycho-
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metric function. If W¥() is a cumulative Gaussian, for
example, & contains one parameter for the slope of the
psychometric function. For the opposite judgement, we
have

p(X;=0)=1—-Y(wAc, +wiAo; +w,Aa,; d) )

using Egs. (8) and (9), we can compute the likelihood
function for any set of n responses as

L(wg,we,wp,d)
=[[ X, ¥(wAc, +wAo; +w,Aa,; d)

+ (1 —=X) (1 =YWwAo, +wlo, +w,Ac,; d))
(10)

where the values of Aos, Aaf and Ag, are the differ-
ences in comparison and test slant derlved from appli-
cation of the scaling, foreshortening and position ideal
observers, respectively, to the stimuli for trial i. We can
use Eq. (10) to derive the maximum likelihood estimate
of cue weights {wg,wgw,} for a given set of responses by
integrating over the psychometric parameters in 4.

The distinction between the current method and
other perturbation methods is that we rely on the
natural perturbations inherent in the random structure
of stochastic texture stimuli. More traditional methods
induce perturbations in stimulus levels by artificially
placing cues in conflict with one another [15]. As Landy
et al. have pointed out, one must take care in perturba-
tion studies to use small perturbations. The current
method automatically keeps the perturbations at a the-
oretical minimum.

4. Experiment 1: Estimating cue weights

We previously descibed a series of experiments on
subjects’ abilities to discriminate planar surface slant
using texture information [11]. Experiment 4 in this
paper contained conditions in which subjects’
thresholds approached those of several of the ideal
observers (particularly, the scaling and position ideal
observers). This suggested to us that we might success-
fully apply the perturbation analysis described above to
the raw data from the experiment to derive estimates of
cue weights. In the previous presentation of results, we
considered only the thresholds derived from the data.
Here we re-analyze the raw data using ideal observer
perturbation analysis.

4.1. Methods

4.1.1. Apparatus

Stimuli were presented on the display monitor of an
SGI computer. The monitor was an SGI model
TFS6705, 17 in., color display with a resolution of

1280 x 1024 pixels. Stimuli were generated in gray-scale
on the display (to the extent that equal settings of color
gun voltages generated flat spectra). Since the stimuli
did not contain smooth shading variations, we did not
do gamma correction. Subjects viewed the stimuli pre-
sented on the monitor monocularly through a reduction
screen, with their heads placed in a chin rest and resting
on a front head-rest. Subjects’ non-viewing eye was
covered with an eye-patch to eliminate any potential for
binocular rivalry. Subjects were tested in a room
painted matte black to minimize secondary reflections
back onto the monitor. Finally, a matte black occluder
was placed over the front of the monitor to obscure the
physical screen boundaries. The monitor was calibrated
using test patterns of dots viewed through a piece of
metal with a square grid of holes drilled in it to ensure
a square geometry.

Subjects viewed the display from a distance of 28 cm,
giving a total angular extent of the display area on the
screen of approximately 48 x 40° of visual angle.

4.1.2. Stimuli

Stimuli consisted of images of textured surfaces sub-
tending a width of 250 pixels and a height of 324 pixels
(displayed side-by-side). At the viewing distance used of
28 cm, this resulted in images of surfaces subtending
10 x 12.5° of visual angle. Stimulus texture patterns
were created by randomly generating surface textures
consisting of sixty elliptical elements and projecting
them under perspective projection onto the computer
screen. The surface textures used to generate stimuli
were sampled from well-defined stochastic processes for
which we had previously derived ideal observers [12].
Texel positions were sampled from a constrained posi-
tioning model (to minimize texel overlap) and texel
lengths and shapes were independently sampled from
different prior probability distributions. The orienta-
tions of texels was chosen from a uniform distribution
around the circle, leading to textures which were
globally isotropic. Four classes of textures were gener-
ated for the experiment based on a crossing of two
different prior distributions of surface texel sizes and
two different distributions of surface texel shapes. One
each of these corresponded to highly constrained distri-
butions and the other corresponded to broad distribu-
tions. This gave rise to four texture conditions
corresponding to all possible combinations of reliable
and unreliable scaling and foreshortening cues (see [11],
experiment 4, for details). As we use the terms reliable
and unreliable, they refer to the relative reliability
between conditions, unreliable simply meaning less reli-
able than the ‘reliable’ conditions.

Stimuli were presented side by side in the experiment,
with each stimulus image having its own simulated
window frame. The innermost boundaries of the sur-
face images were 70 pixels from the center of the screen
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(including the space taken up by the inner frame),
which, for the viewing conditions used, gave a separa-
tion between inner edges of the stimuli of 6° of visual
angle. For each condition in an experiment, the verti-
cal positions of a surface’s boundaries as they ap-
peared in an image were the same for both test and
target stimuli, so that boundary height in the image
plane did not provide a cue to surface slant.

4.1.3. Procedure

We used a two-alternative forced choice procedure
in which subjects judged which of two simultancously
presented texture images appeared to be more slanted.
All conditions in an experiment were randomly inter-
leaved, including the side of the display on which the
correct stimulus appeared. The screen was blanked
between trials, a period which lasted anywhere from
0.5 to 1 s, depending on the time it took to generate
stimuli for the next trial. Subjects were given unlim-
ited time to view the displays on each trial, but were
explicitly instructed to make judgements based on
their immediate guess as to which surface was more
slanted. They were told that on some trials the choice
would be clear and on others it would be more am-
biguous, but to stick with their first guess regardless
of how uncertain it seemed. Feedback was given in
the form of a summary score every 20 trials. The
feedback was used simply to make the task more
palatable for subjects, as pilot studies showed subjects
found the experiment with no feedback extremely un-
pleasant and we suffered from many drop-outs. No
trial-by-trial feedback was given, in order to mini-
mize, as much as possible, the learning of simple 2D
strategies for doing the task.

Test stimuli were generated to simulate a slant of
65°. Two non-parametric staircases (four-up/one-down
and one-up/four-down) were interleaved for each con-
dition to find the 85 and 15% threshold differences in
slant needed for subjects to judge a comparison stim-
ulus to have greater slant than a test stimulus at 65°.

Before starting the main part of the experiment,
subjects were run in a brief demonstration version of
the experiment using textures generated from surfaces
with very large differences in slant (65 and 73° for
test and target stimuli respectively).

4.1.4. Subjects

Subjects were drawn from the student body at the
University of Pennsylvania and were paid for their
participation. Subjects had normal or corrected to
normal vision and were naive to vision science.

4.2. Results

4.2.1. Discrimination thresholds
The psychometric functions measured in the experi-

ment showed a significant negative skew, consistent
with the results of other experiments showing that
discrimination thresholds decrease with increasing
slant [12]. This led us to model the psychometric
function as a cumulative Gaussian in a variance-stabi-
lized slant domain. We used a one-parameter, log

transform as the variance stabilizing function [16].
This was given by

o' =log[l + (o —ay)] 11
where o, is the point of equality; in our -case,
65°!. The resulting psychometric model can be ex-
pressed as a two-parameter function of the un-trans-
formed slant, where [ is the variance stabilizing
parameter and s is the slope parameter of the cumu-
lative Gaussian. In order to compute discrimination

thresholds, we computed maximum likelihood esti-
mates of both f and s.

p(correct) = erf (log.[1 + S (o — a,)]/s) (12)

Fig. 2 shows the thresholds of four subjects for the
four conditions used in the experiment. Also shown
on the graphs are the thresholds of the ideal observ-
ers for each of the three texture cues. For our pur-
poses here, we can treat the ideal observer thresholds
as measures of the magnitudes of the slant perturba-
tions contained within each cue. We do not consider
the threshold data any further here. The reader is
referred to Ref. [11] for a detailed discussion of the
thresholds and their implications.

4.2.2. The analytical model

The model we used to estimate cue weights was a
variant of the one presented in Section 3. We found
the Gaussian noise model to be a good model for
subjects’ judgements when applied in a variance-stabi-
lized slant domain. We therefore applied the linear
cue combination model to surface slant expressed in
the transformed domain. This required applying equa-
tion Eq. (11)to the slants indicated by each of the
three texture cues before combining them in a linear
sum. Fig. 3 illustrates the basic psychophysical model.
The decision variable, Ag’, is given by

Ac'=wAo +wAor+w,Ac, + N 13)

where w, is the weight given to the scaling cue, wy is
the weight given to the foreshortening cue and w, is
the weight given to the position cue. N is a Gaussian
noise process. Ac’. is the difference in the variance-
stabilized slants of the test and comparison surface
suggested by cue x.

'The log transform is derived by assuming that the standard
deviation in perceived slant changes linearly in the neighborhood of
the test slant.
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Fig. 2. Plots of subjects’ 75% thresholds in each of the four experi-
mental conditions in experiment 1: (a) reliable scaling/reliable com-
pression; (b) reliable scaling/unreliable compression; (c) unreliable
scaling/reliable compression; and (d) unreliable scaling/unreliable
compression. Thresholds for the each cue’s ideal observers are shown
as horizontal lines in each of the plots.

In this model, the psychometric function has two free
parameters besides the cue weights; the variance-stabi-
lizing parameter, f, and the slope parameter for a
cumulative Gaussian, s (see equation Eq. (12). Thus we
have as the likelihood function for subjects’ responses

L(M}S,Wf,W'p,ﬂ,S X)

" 1
=[] Xerf <S(WSA0’S, + wiAoi + WPAJ;,’_)>

1
+(1—-X)) (1 — erf((wsAa;_ + wAop + pro{ov)>>
S 7 1 1
(14)

where the values of AJ;I_, Ao}i and Aa;,i are the differ-
ences in variance-stabilized slant derived from applica-
tion of scaling, foreshortening and position ideal
observers, respectively, to the stimuli for trial i.

In order to estimate cue weights, we integrated the
likelihood function over f and s. We further con-
strained the cue weights to sum to one, since the
absolute magnitude of the weights is indeterminate
from discrimination data. A simplex search [17] was
used to find the maximum likelihood estimates of cue
weights for each condition in the experiment.

4.2.3. Results of the analysis

The space of allowable weights lies in a triangular
planar region in the three-dimensional space of cue
weights, as illustrated in Fig. 4. The vertices of the
triangle correspond to weight configurations in which
only one cue is used to perform the task. The sides
correspond to weight configurations in which one or
another cue is unused. Fig. 5 shows an example of a
likelihood function derived from one subjects’ data,
plotted in this triangular space. The most salient feature
of the function is that it is concentrated on the side of
the triangle corresponding to a position weight of zero.
We found similar results for all subjects and conditions
in the experiment. The apparently insignificant weight
given to position information in the experiment allows
us to present the results in a much more compact form
as a function only of the relative weight given to scaling
and foreshortening information.

Fig. 6 shows results of the perturbation analysis
applied to the three conditions of the experiment in
which at least one of the scaling or foreshortening cues
had some non-trivial uncertainty (in one condition,
both were too reliable to generate significant perturba-
tions). The results are plotted as the likelihood func-
tions for the foreshortening weight (the scaling weight
is one minus the foreshortening weight), given subjects’
responses. Table 1 summarizes the results, listing the
maximum likelihood estimates of the foreshortening
weight, with 95% confidence intervals.

The data has three notable features. First, as already
mentioned, the position cue receives little or no weight
in subjects’ discrimination strategies. Second, foreshort-
ening information 1is consistently weighted more
strongly than scaling information. Only in the condi-
tion that scaling information is very reliable and fore-
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Fig. 3. The signal detection model we used for our analysis (see text for description).
shortening information is weaker is there any hint that weights vary consistently with relative cue reliability.
scaling is given close to the same weight as foreshorten- For three of the four subjects, foreshortening informa-
ing information. The confidence intervals on the tion gets the smallest weight when scaling information
weights estimated for this condition, however, are quite is a very reliable indicator of slant and foreshortening is
broad. Finally, there is a weak suggestion that cue not. Foreshortening receives the largest weight when it

is a reliable cue and scaling is not.

{wg=0,wg=1, wp=0}

Wg+Wf+Wp = 1

fwg=1, ws=0, wp=0}

{wg=0, wg=0, w p=1 }

Fig. 5. The likelihood function for cue weights for one subject

] ] ) we ) (subject AA) in the scaling reliable/foreshortening unreliable condi-
Fig. 4. The space of possible cue w'elghts lies on a plane deﬁned by tion. The likelihood function is concentrated on the side of the
the equation, w, + wp+ w, =1, and is bounded by the constraint that triangle corresponding to a zero weight for the position cue. This

all weights are positive. effect is found for all subjects in all conditions.
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Fig. 6. Likelihood functions for cue weights plotted for each of the four subjects in experiment 1.

4.3. Discussion

4.3.1. Estimation bias

Before discussing the theoretical import of the re-
sults, we must consider a technical issue regarding the
estimation procedure whether or not it is biased in any
way. In no condition were the perturbation levels in the
scaling and foreshortening cues commensurate. More-
over, the perceptual interpretation of the different cues
is corrupted by early level sensory noise of unknown
magnitude, possibly further exacerbating the effective
difference in perturbation levels. These differences can
lead to biases in some weight estimation methods [18];
therefore, it was important to ascertain that our results
were not contaminated by such biases.

We ran a number of simulations of model systems in
which the data was collected from ‘experiments’ with
an observer that performed linear weighted averages of
cue slants to make discriminations. We manipulated
independently the variance of cue perturbations and the
simulated levels of the observers’ weights for different
experiments. In none of the simulated cases did the
maximum likelihood approach to fitting observers’
weights to discrimination data give rise to any estima-

tion bias. That is to say, the expected value of the
estimated weights was equal to the true observer
weights regardless of the relative perturbation levels of
the cues.

4.3.2. Texture cue weights

The most striking result of the analysis is that sub-
jects clearly relied heavily on foreshortening informa-
tion to perform the slant discrimination task. There is
some hint that the relative weighting of foreshortening
information decreases when scaling information is most
reliable; however, even here the weight assigned to
foreshortening is significant. The significant role of
foreshortening in the discrimination task is consistent
with previously cited evidence that this cue is of pri-
mary importance in the perception of planar surface
slant from stochastic textures [3]. Conflicting evidence
generally comes from experiments employing regular
texture patterns [2,3,5] suggesting that cue weights may
be qualitatively different for highly regular texture pat-
terns. As Frisby et al. have argued, the large weights
given to scaling information for regular textures may
result from the use of a linear perspective cue which
does not appear in images of stochastic textures.
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Table 1

Maximum likelihood estimates of foreshortening weight, with position weight set to zero

Subject Condition Foreshortening weight 95% Confidence interval
AA Rel. Scaling/Unrel. Foreshortening 1 045, 1)
AA Unrel. scaling/Rel. Foreshortening 1 (0.88, 1)
AA Unrel. scaling/Unrel. foreshortening 0.89 (0.66, 1)
A Rel. scaling/Unrel. foreshortening 0.74 (0.39,0.99)
1 Unrel. scaling/Rel. foreshortening 1 (0.95, 1)
A Unrel. scaling/Unrel. foreshortening 0.87 (0.72,0.99)
00 Rel. scaling/Unrel. foreshortening 0.67 (0.25,0.97)
00 Unrel. scaling/Rel. foreshortening 0.92 (0.82, 1)
00 Unrel. scaling/Unrel. Foreshortening 0.76 (0.58,0.92)
77 Rel. Scaling/Unrel. Foreshortening 0.4 (0.06,0.77)
77 Unrel. Scaling/Rel. Foreshortening 0.81 (0.73,0.9)
77 Unrel. Scaling/Unrel. Foreshortening 0.72 (0.56,0.86)

(MLE estimates of position weights were all zero, with three exceptions very close to zero- subject AA had position weights of 0.05, 0.04, and 0.05
none of which were significantly greater than 0. The scale weight is given by one minus the foreshortening weight.

The heavy reliance of subjects on texture foreshort-
ening information to make judgements of surface slant
raises the question of how they interpret the cue. In
particular, we must ask whether they rely on a prior
assumption that surface textures are isotropic to inter-
pret texture foreshortening.

5. Experiment 2: Testing for isotropy

Using an isotropy assumption to interpret foreshort-
ening information would have a number of obvious
advantages. It would make the estimation of surface
orientation from texture much more local than could
be supported by a more general assumption of homo-
geneity (which requires using spatial ‘gradients’ in tex-
ture foreshortening). It also renders texture
foreshortening information significantly more reliable,
when the isotropy assumption is correct. For images
of isotropic texture patterns like those used in experi-
ment 1, ideal observer thresholds for discriminating
surface slant increase by a factor of three to five times
when prior knowledge of isotropy is removed from the
ideal observer [12].

In this section, we describe an experiment and asso-
ciated ideal observer perturbation analysis designed to
test whether or not subjects rely on an assumption of
surface texture isotropy to discriminate surface slant
from texture. In the experiment, we used a variety of
types of surface textures to test how generalizable the
role of isotropy is. These include elliptical element
textures, Voronoi textures and rectangular element tex-
tures. The rectangular element textures contain a
strong ‘higher-order’ shape cue to surface orientation
which is not conditioned on a putative prior assump-
tion of isotropy the skew of projected texture ele-
ments. We included these textures in the experiment to

test for an influence of higher-than-second order tex-
ture shape information on human perception of slant
from texture.

5.1. Strategy

As in the previous experiment, we measured sub-
jects’ ability to discriminate surface orientation from
texture. In one condition of the experiment, we used
stimuli generated from isotropic surface textures. In
other conditions, we randomly perturbed the ‘degree’
of anisotropy of the surface textures used to generate
stimuli. To do this, we globally compressed isotropic
surface textures by random amounts, in random direc-
tions, before projection into a stimulus image. The
resulting stimulus sets simulated truly random samples
drawn from an ensemble of surface textures with vary-
ing amounts of global compression. These included
isotropic textures, but only as a special case. Fig. 7
illustrates the method.

The logic of the experiment follows from the obser-
vation that anisotropies in surface texture patterns will
induce predictable biases in the perceived orientation
of a surface for a system which assumes surface tex-
ture isotropy. Fig. 8 illustrates the biasing effects of
globally compressing surface textures before projec-
tion; an observer which uses only foreshortening infor-
mation and assumes isotropy will overestimate surface
slant for images of surface textures compressed in the
direction of surface tilt and will underestimate slant
for images of surface textures compressed in the per-
pendicular direction. Because of these biasing effects,
the random variations in surface texture compression
which we have used to make the anisotropic stimuli
for the experiment create large perturbations in the
surface slant indicated by what we will refer to as the
foreshortening-withisotropy cue. The foreshortening-
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with-isotropy cue is simply the foreshortening cue inter-
preted using an assumption of surface texture isotropy.

We can use the foreshortening ideal observer derived
using the isotropy assumption to measure the perturba-
tions in the foreshortening-with-isotropy cue. Correlat-
ing subjects’ discrimination judgements on a
trial-by-trial basis with the stimulus slants suggested by
the foreshortening-with isotropy ideal observer provides
a means to measure the strength of subjects’ assump-
tions of isotropy.

We followed a two-stage strategy in our analysis.
First, we performed a non-parametric test to determine
if the proportion of times subjects’ judged the compari-
son stimulus to have a greater slant than the test
stimulus was reliably correlated with the slant differ-
ence indicated by the foreshortening-with-isotropy cue.
Second, we applied a variant of the linear model de-
scribed above to estimate weights assigned to different
texture cues, including the foreshortening-with-isotropy
cue.

The linear model used to predict subjects’ data in-
cluded, as before, scaling, position and foreshortening-

Compress
(in tilt direction) Project

Compress

20

—e
-

)

Fig. 7. Stimuli for the experiment were created in three steps. First a
random, isotropic texture was created (Examples of Voronoi textures
are shown here). Second, the texture was compressed by a random
factor between 0.7 and 1.0. In the figure, the compression was done
either in the direction of surface tilt (top figure) or in the perpendicu-
lar direction (bottom figure). In the experiment, the direction of
compression was chosen randomly between 0 and 180°. Finally, the
texture was mapped onto a planar surface viewed at a fixed slant
away from the line of sight. In the figure, both textures are mapped
onto surfaces slanted away from the line of sight by 60°. If you have
a bias to interpret the surface textures as isotropic, then you should
see the top figure as being more slanted away from you than the
bottom figure.
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Fig. 8. The average slant estimate derived from the foreshortening
ideal observer which assumes isotropy, as a function of the factor by
which a surface texture is globally compressed away from being
isotropic (in the direction of surface tilt). Compression factors less
than one represent greater compression, compression factors greater
than one represent stretching of the texture. Small compression
factors represent more compression. The true slant is 65°. The range
of compression factors is the same as used in the experiment; thus,
the range of biases predicted by isotropy varies from + 5 to — 5°.
Stimuli in the experiment were created by compressing surface tex-
tures not only in the tilt direction, but also in randomly chosen
directions between 0 and 180°. The predicted slant biases for the
experimental stimuli, assuming the tilt is known, depends both on the
compression factor and the direction of compression. in the experi-
ments, the horizontal boundaries of the stimulus surfaces provided a
strong cue, as confirmed by subject reports, that the surfaces were
tilted in a vertical direction.

with-isotropy cues. We further included in the analysis
a ‘null’ cue, which was set to the true slant difference
for each trial; thus, the model contained four weight
parameters (constrained to sum to one). The null cue
served as a dummy variable to represent the degree to
which subjects’ perceptual estimates of slant were
pulled away from the biased interpretations derived
from the isotropic ideal observer and not accounted for
by the scaling and position cues. One factor which
would contribute to a significant weight for the null cue
would be a less than complete assumption of isotropy;
that is, a soft rather than hard bias towards isotropy.
We will consider other factors which could contribute
to this weight in the context of the results obtained
from the analysis.

5.2. Methods

5.2.1. Apparatus

We used the same apparatus for experiment 2 as we
used for experiment 1. We refer the reader to the
methods section for experiment 1 for details.

5.2.2. Stimuli
Four classes of textures were used to create stimuli
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for the experiment: isotropic, elliptical element textures;
anisotropic, elliptical element textures; anisotropic,
Voronoi textures (see figure Ib); and anisotropic,
rectangular element textures. The anisotropic textures
were generated by globally compressing surface textures
by random factors between 0.7 and 1.0 before projec-
tion. The compression was applied in randomly selected
directions over the range 0-180°. We chose to do this,
rather than always compressing textures in the tilt/anti-
tilt directions, in order to maximize the likelihood of
subjects detecting the anisotropy of the stimulus ensem-
ble and switching to an anisotropic interpretation strat-
egy (the tilt direction is reliably determined by the
horizontal orientation of the surface boundaries in the
image). Thus, our estimates of the strength of the
isotropy assumption will not be overly optimistic, as
might occur were we only to compress textures in
directions which more directly mimic the effects of
projective foreshortening in the known tilt direction.

A special method was used to create anisotropic
rectangular element textures. We did so by first com-
pressing an elliptical element texture and then replacing
the ellipses with rectangles of equivalent length, orienta-
tion and aspect ratio. This gave rise to textures whose
global orientation statistics were the same as the ellipti-
cal element textures, but whose elements were com-
posed of rectangles.

The elliptical element, Voronoi and rectangular ele-
ment textures were equated to have the same statistics
in their second-order spatial moments. We accom-
plished this by first generating Voronoi textures from
constrained random lattices of sample points, and then
computing the statistics of the ellipses fitted to the
Voronoi polygons in the texture patterns (see [11,12] for
details). The Voronoi texture statistics were used to
create the elliptical element and rectangular element
textures. This implies that if one were to replace the
texels in the Voronoi and rectangular textures with
their fitted ellipses, they would appear qualitatively the
same as the elliptical element textures. The one excep-
tion to this is that the Voronoi textures show no
overlap due to the constrained way in which they were
created.

The remainder of the stimulus parameters (size, num-
ber of texture elements and average size of elements)
were the same as in the previous experiment.

5.2.3. Procedure
The procedure used for the experiment was the same
as that used in the previous experiment.

5.2.4. Subjects

Subjects were drawn from the student body at the
University of Pennsylvania and were paid for their
participation. Subjects had normal or corrected to nor-
mal vision and were naive to vision science.

5.3. Results

5.3.1. Discrimination thresholds

Fig. 9 shows 75% thresholds for the four conditions
of the experiment, computed in the same way as in
experiment 1. The comparisons of interest are between
the isotropic elliptical and anisotropic elliptical condi-
tions and between the anisotropic elliptical and the two
other anisotropic texture types. For three of the four
subjects, discrimination thresholds are significantly
higher for the anisotropic elliptical textures than for the
isotropic elliptical textures. No consistent pattern
emerges across the three anisotropic texture conditions.

The hypothesis that subjects employ some form of
isotropy constraint to infer surface orientation from
texture predicts that discrimination performance should
decrease when the degree of anisotropy in surface tex-
tures is randomly perturbed in the experiment. This is
broadly consistent with the significant difference in
thresholds found for three subjects between the
isotropic and anisotropic elliptical texture conditions.
The result does not, however, prove the point. Other
factors may well cause stimuli generated from an-
isotropic textures to be less discriminable. We therefore
turned to a closer, trial-by-trial comparison of subjects’
judgements with the stimulus slant differences suggested
by the foreshortening-with-isotropy cue.

5.3.2. A qualitative test of isotropy

In our first pass at rigorously testing whether subjects
relied to some degree on an assumption of isotropy to
make judgements of surface slant in the experiment, we
wanted to avoid making any assumptions about the
form of subjects’ psychometric functions or of the
cue-integration process (e.g. linearity). We therefore
performed a non-parametric test on the data obtained
in the three anisotropic texture conditions. The null
hypothesis was that within each fixed level of compari-
son-test slant difference no significant correlation would
be found between the proportion of times subjects
judged the comparison stimulus to be most slanted and
the slant difference indicated by the foreshortening-
with-isotropy cue (as measured by application of the
isotropic, foreshortening ideal observer). The isotropy
hypothesis, on the other hand, predicts that the greater
the slant difference indicated by foreshortening-with-
isotropy, the greater the proportion of times subjects
would judge the comparison stimulus to be most
slanted.

In order to test the null hypothesis, we first binned
trials, at each level of comparison-test slant difference,
into three bins. These corresponded to smaller, medium
and larger differences in slant as measured by the
isotropic, foreshortening ideal. The boundaries of the
bins at each level of comparison-test slant difference
were determined so as to equate, as much as possible,
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Fig. 9. Threshold data from the second experiment. For simplicity, we have only plotted one-sided discrimination thresholds; that is the positive
difference in slant between test and comparison stimuli needed to correctly judge the comparison stimulus to have greater slant 75% of the time.

Fig. 10 shows the resulting, binned data for subject
PP in the three anisotropic texture conditions. Plots for
the other three subjects show a similar pattern. The
effect’s of an apparent assumption of isotropy are

the number of trials falling into each bin. We then
performed a y° test for the goodness-of-fit of the null
model, which predicts flat psychometric functions
within each level of comparison-test slant difference.
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(see Table 2). Out of the twelve comparisons (four
subjects, three anisotropic texture conditions), only
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Fig. 10. Plots of the percentage of times subject PP selected the
comparison stimulus as having greater slant than the test stimulus as
a function of the slant difference indicated by the foreshortening-
with-isotropy cue (after binning). The dashed lines indicate the results
predicted by the null hypothesis. For each level of slant difference,
these lines are flat, at the level of the average percentage of trials in
which subjects choose the comparison stimulus to have greater slant
(labeled here as percent correct). The width of the lines reflects the
range of perturbations in the foreshortening-with-isotropy cue in-
duced by the random perturbations in surface texture compression.

three fail to reach a significance level of 0.05, though
two of these come close. The analysis confirms that
in most texture conditions, subjects’ discrimination
performance correlates with the slant difference indi-
cated by the foreshortening with-isotropy cue, for
fixed physical slant differences.

The approach just described has a number of
problems. First, by its non-parametric nature, it pro-
vides only a qualitative test of isotropy. We would
ideally like some measure of the strength of subjects’
isotropy bias. Second, simulations of the ideal ob-
servers for the scaling and position cues revealed
that compressing
surface textures before projecting them into an image
induced biases in these cues which were correlated
with the biases induced in the foreshortening-with-
isotropy cue. This is not surprising for the position
cue, which gains some of its informativeness from
the relative spacing between texels, and can therefore
by biased by an isotropy assumption in much the
same way as the foreshortening cue?. It is more sur-
prising for the scaling cue, which we would expect to
be free of assumptions about the orientation statis-
tics of a texture. In fact, the dependence of the scal-
ing cue on surface texture compression depends on
what image measurements serve as the basis of the
cue. In our case, we have equated scaling informa-
tion with the information provided by the spatial
distribution of texel lengths in an image, which, it
turns out, leads to small biasing effects of surface
texture compression®. While the scaling bias is weak
(it is approximately half that of the foreshortening
bias for the range of compressions used here, and
decreases to zero for larger compressions), it could
theoretically explain the results of the analysis.

The difficulties in interpreting the non-parametric
test led us to perform a more quantitative analysis in
which we computed the weights given by subjects to
position, scaling and foreshortening with-isotropy
cues in their discrimination strategies.

2We used the position ideal observer derived with an assump-
tion of isotropy for the simulation.

3 Compressing a surface texture composed of texels at random
orientations by small amounts has the effect of increasing the
variance of texel lengths. The scaling ideal observer effectively se-
lects estimates of slant which minimize the variance of back-pro-
jected surface texel lengths. Since the scaling ideal observer knows
nothing about the surface texture compression, it gains some ad-
vantage in picking slants for which the surface texture compres-
sion is ‘undone’ by the decompressing effects of back-projection.
The bias disappears for compression factors much less than 0.5,
but this is smaller than the range of compressions used in the
current experiment.
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Table 2

%2 values for testing whether the probability of judging the comparison stimulus to have greater slant than the test stimulus is unaffected by an

isotropy assumption

Texture Type

Subject Anisotropic Elliptical Anisotropic Voronoi Anisotropic Rectangular
PP x%(18) = 66.7(<0.0005) x%(18) = 91.9(<0.0005) x2(16) = 29.65(<0.01)
WW x%(18) = 34.42(<0.01) x%(18) = 34.06(<0.01) x2(18) = 9.08(*)

SS x%(18) = 44 59(<0.0005) x%(20) = 25.13(*) x2(20) = 26.89(*)

LL x%(20) = 54.45(<0.0005) x%(16) = 60.08( < 0.0003) x%(16) = 30.2(<0.01)

The numbers in parentheses are the degrees of freedom for the test. Only levels of slant differences which were tested more than fifteen times in
the experiment (giving a minimum of five trials per bin) were used for the test. A * indicates that the level of significance was above 0.05.

5.3.3. Linear perturbation analysis

We used the technique described in Section 3.3 to
estimate the weights given by subjects to different tex-
ture cues in the current experiment. The list of cues we
included in the estimation procedure included scaling
information, foreshortening (with isotropy) informa-
tion, position (with isotropy) information and the null
cue described above, which is simply the true compari-
son-test slant difference. The reason for inclusion of the
null cue will become clear shortly.

The foreshortening cue defined here is sub-ideal in
the sense that it relies on the incorrect assumption of
isotropy. We would like the model to accommodate the
possibility that the visual system shows a graded bias
towards isotropy. One way to do this would be to
simulate foreshortening observers which simultaneously
estimate global surface texture compression along with
surface slant. A graded bias towards isotropy would be
modeled in this framework as a prior distribution which
assigns graded probabilities to different surface texture
compression parameters. The difficulty in this technique
is largely practical searching for the best fitting parame-
ters for such a prior distribution is computationally
prohibitive. We therefore chose to include within the
linear formulation a dummy cue which represents per-
fect knowledge of stimulus slant. As described in the
introduction to this section, a stronger prior assump-
tion of isotropy should lead to less weight being given
to the null cue in the analysis.

Other facts could contribute to a stronger weight
being given to the null cue. The most interesting of
these, for the Voronoi and rectangular textures, is the
presence of other information in the stimuli not ac-
counted for by the scaling, foreshortening and position
ideal observers, which only make use of the second-or-
der spatial moments of texels (length, orientation and
aspect ratio). For Voronoi textures, some information
is provided by the perspective convergence of parallel
texel borders (probably a minor effect given the limited
size of the texels), and other information exists in the

higher-order spatial moments of the texels. For rectan-
gular element textures, texel skew provides a reliable
cue to surface slant independent of texel size, orienta-
tion and aspect ratio. The influence of these alternative
sources of information should be reflected in the weight
given to the null cue.

As in the first experiment, we found no cases in
which significant weight was given by subjects to the
position cue. For ease of exposition, therefore, we have
removed this cue from the model fits. Table 3 summa-
rizes the maximum likelihood estimates of the remain-
ing three cue weights obtained from the analysis. To
show the results graphically, we plotted the estimates of
weights computed for each subject in a triangular space
representing the possible relative combinations of
weights, constrained to some to 1 (see Fig. 11). The
vertices of the triangles correspond to one or another of
the cues being given a weight of 1. Points along the left
side of the triangle correspond to a zero scaling weight,
points on the right side correspond to a zero foreshort-
ening-with-isotropy weight and points along the bottom
correspond to a zero null weight. The center of mass of
the triangular space is the point at which all three
weights are equal.

The data clearly show only a small weight being
given to the scaling cue across all subjects and texture
types. The foreshortening-with-isotropy cue receives a
strong weight for all subjects and conditions, but is
reduced significantly relative to the null cue for rectan-
gular textures.

5.4. Discussion

5.4.1. Isotropy

The data not only confirms the results of the first
experiment, that subjects gave minimal weight to the
scaling cue to make discriminations; it also clearly
reveals a strong isotropy assumption in subjects’ inter-
pretations of slant from texture. The strength of the
assumption is similar for both the elliptical element
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Maximum likelihood estimates of the weights given to scaling, foreshortening-with-isotropy and the null cue (see text for discussion)

Subject Condition Scaling weight Foreshortening-with-isotropy weight Null weight
PP Ellipse 0.23 0.62 0.15
PP Voronoi 0.09 0.68 0.23
PP Rectangle 0.2 0.35 0.45
wWwW Ellipse 0 0.78 0.22
WwW Voronoi 0.06 0.57 0.37
Ww Rectangle 0 0.41 0.59
SS Ellipse 0.03 0.68 0.29
SS Voronoi 0.09 0.53 0.38
SS Rectangle 0 0.54 0.46
LL Ellipse 0.11 0.89 0
LL Voronoi 0.15 0.82 0.03
LL Rectangle 0.09 0.48 0.43

The three stimulus conditions shown are the anisotropic stimulus conditions, in which the degree of anisotropy of surface textures (amount by
which they were globally compressed) was randomly perturbed before projection into stimulus images.

textures and the more natural Voronoi textures. It is
reduced somewhat for the rectangular element textures.

The most straightforward way to interpret the mean-
ing of the linear model presented here is to use the
combination of cue weights to predict biases in per-
ceived slant as a function of surface texture compres-
sion. We will refer to these biases as isotropy biases. In
particular, for a given image, we have for a prediction
of perceived surface slant the equation, where ¢ is the
perceived slant for a stimulus, o is the slant indicated
by the scaling information in the stimulus, o, is the
slant indicated by the foreshortening-with-isotropy in-
formation and o, is the actual slant of the stimulus*

(15)

The bias induced by compressing a surface texture
before projection into the image is given by

0= W04+ Wiop+ W0,

Ao =wAo,+ wiAo, (16)

where Ao, and Aoy are the biases induced by the scaling
and foreshortening-with-isotropy cues in the stimulus,
respectively. Since we know from simulations that the
scaling cue bias is approximately half that of the fore-
shortening-with-isotropy bias for anisotropic textures,
we can express the overall bias as a factor of the bias
predicted by the foreshortening-with-isotropy cue.
Writing the predicted bias as Ag = aAgy, we obtain a
factor of o =0.5+ w;. Applying this equation to the
weights derived from the current experiment, we find
predicted bias factors ranging from 0.41 to 0.95. This is
consistent with the wide range of biases found in other
experiments [2,8].

4 We should properly apply the linear model in the variance-stabi-
lized slant domain for which we derived estimates of weights. We
have found, however, that the resulting predicted biases are well-ap-
proximated by applying the simple linear model in the standard slant
domain.

We should emphasize that the current experiment
mixed a random selection of surface texture compres-
sion factors and directions of compression. The esti-
mated weights are therefore some form of average of
the weights for the different surface texture compres-
sions. It may well be that the isotropy bias is more
pronounced in some conditions than others; for ex-
ample, conditions in which the compression is in the
direction of tilt. We will consider this point further in
the general discussion.

5.4.2. Higher-order texture shape information

The predicted bias factors for the anisotropic ellipti-
cal and rectangular texture types are listed in Table 4.
The data for all four subjects shows that the isotropy
bias is significantly weaker for rectangular element tex-
tures than it is for the elliptical element textures. Since
the texture stimuli in these conditions had identical
information in the second-order spatial moments of the
textures, the result is consistent with the hypothesis that
the visual system uses higher-order texel shape informa-
tion such as that provided by local texture skew. This is
true even though the textures used here were stochastic
not regular rectangular grids for which one might natu-
rally expect skew to have a significant impact on per-
ceived slant.

6. General discussion

6.1. Foreshortening-with-isotropy

The results of the analysis are consistent with the
hypothesis that subjects rely most heavily on local
foreshortening information (i.e. with the isotropy as-
sumption) to judge surface slant from texture, even for
images of extended planar surfaces. This contradicts the



D.C. Knill / Vision Research 38 (1998) 2635—-2656 2651

Subject PP

Null Cue
{wg=0, wg=0, w =1}

Foreshortening Ellipses Scaling
w/ Isotropy fwg=1, w¢=0, wy=0}
{wg=0, w¢=1, w,=0}
Subject SS
Null Cue
{wg=0, ws=0, w =1}
/\
\
/
\
/
\
/
\
/
¥ \
Rectangles / \
\
/
Voronoj \
\
\
Ellipses \
/ [ \
Wg =Wf=W
/ ws =wg =wp} \\
4 \
/ \
/ \
N

Foreshortening Scaling
w/ Isotropy fwg=1, w¢=0, wy=0}

{wg=0, wg=1, w,=0}

Subject WW
Null Cue
{wg=0, wg=0,wp=1}
/\
\
/
\
/
/ \
Rectangles / \
\
\
\
X \
Voronoi , \
\
\
/ o \
Ellipses {ws = wf = wp} \
— \
\
/ \\
L — e — .
Foreshortening Scaling
w/ Isotropy fwg=1, w=0, wy=0}
{we=0, we=1, w =0}
Subject LL
Null Cue
{wg=0, wg=0, w =1}
/\
\
/
\
/
\
/
/ \
\

/ [ ] \
4 {ws =wg = wp} \
Ellipses / \
/ \
\
\
Foreshortening Voronoi Scaling

w/ Isotropy {wg=1, wg=0, wy=0}

{wg=0, w¢=1, w,=0}

Fig. 11. Maximum likelihood estimates of cue weights calculated for each of the four subjects in experiment 2. The sides of the triangle correspond
to one or another weight (corresponding to the facing vertex) being given zero weight. Position along a side, or any parallel line interior to the
triangle, specifies the proportion of weight given to the cue associated with the vertex at one end of the side relative to the cue associated with
the vertex at the other end. Error bars were estimated from the second derivative of the likelihood function computed in the direction of each

vertex, and were truncated at the boundaries of the space.

conclusions of [6], but is consistent with a growing
body of literature on the perception of planar surface
orientation from texture [2,3,8]. The finding of a strong
reliance on foreshortening-with-isotropy is also consis-
tent with results on human perception of surface curva-
ture from texture, both in small field of view displays
[4,9,13,14] and in large field of view displays [3,6]. The
conclusion, however, is tempered by the finding of a
significant difference between predicted isotropy biases
and the actual biases estimated from the experimental
data in experiment 2. While it is not entirely clear to
what to attribute this difference, it does indicate that
subjects integrated a local isotropy strategy with a more

global gradient-based strategy, since, at least in the
ellipse condition, it is only gradient-based information
which provided unbiased information about surface
orientation.

The textures composed of randomly oriented rectan-
gles elicited less of an isotropy bias than did the tex-
tures composed of ellipses or, for three of the subjects,
the Voronoi textures. This is consistent with the hy-
pothesis that higher-order local texture moments (skew)
contribute to subjects’ orientation judgements. More
generally, it highlights the dependence of observers’
estimation strategies on texture type. Another example
of this is the finding that for textures composed of
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regular arrays of rectangles (arrayed in parallel), sub-
jects give more weight to scaling information than to
foreshortening [3]. Frisby et al. have suggested that the
contradiction between this result and other results sug-
gesting the dominance of foreshortening information
may be explained by the fact that the regular arrays of
rectangles contained a strong linear perspective cue, a
global cue which does not appear in images of ran-
domly oriented texture elements.

Decomposing texture information into cues con-
tained in the local second-order spatial moments of
texture patterns and those contained in higher-order
moments provides a route to reconciling the results
obtained with different texture types. The existing data
is best fit by the hypothesis that second-order spatial
moment information is interpreted by giving most
weight to foreshortening information with a strong
assumption of isotropy, but that higher-order spatial
cues (linear perspective, skew) contribute significantly
to the percept of surface orientation when present in
images. Whether such higher-order shape cues con-
tribute to curvature perception remains to be seen.

6.2. Other texture cue decompositions

We have decomposed texture information in a very
particular way: into scaling, foreshortening and posi-
tion cues. While this decomposition has a sound com-
putational basis (e.g. separating the scaling and
foreshortening effects of projection), one must consider
the possibility that the visual system relies on a differ-
ent decomposition. This is particularly relevant to the

Table 4

Estimates of the slant bias factors derived from the weights estimated
in each of the ellipse and rectangle texture conditions of the experi-
ment

Isotropy bias factor

Subject  Ellipse Textures Rectangle Tex-  Z-test
tures

PP 0.735 4+ 0.065 0.45 4 0.063 Z=315(p <
0.001)

wWwW 0.78 4 0.086 0.41 4+ 0.084 Z=312(p <
0.001)

SS 0.695 4+ 0.063 0.54 +0.07 Z=165(p <
0.05)

LL 0.955 4 0.085. 0.52540.071 Z=3838(p <
0.0001)

The bias factor specifies fraction of the foreshortening-with-isotropy
bias which should appear in subjects’ estimates of slant for the stimuli
used in the experiment. The confidence intervals on the bias factors
are the estimated standard errors of the estimates, derived from the
Hessians of the likelihood functions (effectively fitting Gaussian
distributions to the likelihood functions in the neighborhood of the
peak). These estimates were used to compute the Z-scores for the
difference in bias factors between texture conditions.

cues which rely on spatial gradients in texture proper-
ties; in particular, scaling and foreshortening-without-
isotropy. Todd et al. [13], for example, have suggested
that the visual system uses a form of foreshortening-
with-isotropy to measure local surface tilt, but uses the
derivative of texel widths (computed in the tilt direc-
tion) to measure local surface curvature in the direction
of tilt. This idea, per se, is problematic, since the spatial
gradient of texture widths is dependent on both curva-
ture and slant [19]°, but it does make clear the possibil-
ity of other parameterizations of texture cues.

It is true that the weight given to the scaling cue may
in fact reflect a reliance on a texture measurement other
than texel length (e.g. texel width computed perpendic-
ular to surface tilt, or texel area); however, the principle
result of the current study is that subjects relied most
heavily on the foreshortening-with-isotropy cue. This
cue is essentially local and cannot be approximated by
combinations of other forms of texture gradients. Thus,
the results do directly implicate the foreshortening-
with-isotropy cue as we have defined it.

6.3. When to use isotropy and when not to

The results of the second experiment implicate a soft
form of the isotropy assumption. While this can be
implemented in several ways, there is an ‘ideal’ way to
soften the isotropy assumption. In particular, the as-
sumption should be embodied in a mixture of experts
model [20] in which the likelihood function for surface
orientation from texture is derived from a mixed prior
model of surface textures. This is a particular type of
mixture-of-experts model which Yuille and Clark have
refered to as a competitive prior model [21]. We briefly
discuss here the structure and implications of such a
model. We will assume for simplicity that surfaces are
constrained to be planar. In practice, such a constraint
may derive from other cues (e.g. straight surface
boundaries) present in an image.

A reasonable assumption about natural surface tex-
tures is that, while not all textures are isotropic, some
non-zero percentage are. This leads to a mixed prior
model of surface textures, with some percentage being
isotropic and some not. The likelihood function for
such a model is a weighted sum of two likelihood
functions,

P/(f/o'af) = npisotropic(f/o-ar) + (1 - n)panisotropic(f/gaf)
(17)

where 7 represents a collection of measurements of the
local shape and orientation properties of an optical
texture pattern, ¢ and 7 represent slant and tilt, respec-

5 The psychophysical evidence cited in support of the hypothesis
may also be interpreted in other ways, as discussed in Cumming, et.
al.[14]
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Fig. 12. Likelihood functions for the isotropic foreshortening and anisotropic foreshortening cues. The former was derived assuming that surface
textures are isotropic. The latter was derived assuming that all surface texture compression factors and directions of compression were equally
likely; that is, that the global ‘aspect ratios’ of surfaces textures was uniformly distributed from between O and 1 and the global orientations of
the textures were uniformly distributed between O and 2z. (a) For isotropic textures, the magnitude of the likelihood function for the anisotropy
model is too small relative to the isotropy likelihood function to appear on the graph; (b) For a surface texture compression of (.85 in a direction
perpendicular to the surface tilt, the isotropy model still dominates; (c) For a compression factor of 0.7, the anisotropy model becomes weakly
dominant. Note the increasing bias in the isotropy model with increasing surface texture anisotropy as well as the decrease in the goodness of

fit of the isotropy model.

tively and 7 is the proportion of surface textures in the
world assumed to be isotropic (the likelihood functions
are implicitly conditioned on surface planarity, which
may itself have some attached probability). The relative
magnitudes of the two component likelihood functions
determine whether or not to impose isotropy, or how
much to weight the isotropy interpretation of surface
orientation.

The central insight to seeing how this might work is
the observation that the likelihood function for the
isotropic sub-model will decrease in magnitude for im-
ages of anisotropic textures, since the global texture
pattern will not be consistent with a planar, isotropic
surface texture. This allows the information contained
within the foreshortening cue itself to automatically
determine whether or not the isotropy assumption is

appropriate for a given stimulus, when other informa-
tion is available to constrain a surface to be planar. To
illustrate how this might work, we have derived exam-
ple likelihood functions for the isotropic model and an
anisotropic model (in which the orientation and magni-
tude of global surface texture compression are both
assumed to be uniformly distributed) for stimuli like
those used in experiment 2. Fig. 12 shows sample
results for the image of an isotropic surface texture and
images of the same surface texture compressed by fac-
tors of 15% and 30% in a direction perpendicular to
surface tilt.

Two features of the mixed likelihood function are
notable. First, for truly isotropic textures, the isotropy
sub-model clearly dominates the mixed likelihood func-
tion; thus, the foreshortening information contained in
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sample images of isotropic textures is enough by itself
to determine that isotropy is an appropriate assumption
to use for texture interpretation. Second, the relative
heights of the two component likelihood functions
change with increasing anisotropy of the surface texture
used to create an image greater anisotropy leads to a
shrinking of the isotropic likelihood function relative to
the anisotropic likelihood function. When the compres-
sion factor is much greater than 30%, the magnitude of
the isotropy likelihood function becomes vanishingly
small relative to the anisotropic likelihood function (the
actual transition point will depend on how regular
textures are, field of view and so on).

The mixed likelihood function specifies in an objec-
tive way the information content of the foreshortening
cue in a texture pattern. How to select a slant based on
the foreshortening information is an open question.
When the magnitudes of the component likelihood
functions differ greatly, any reasonable strategy will
reduce to switching to one or another strategy. When
the magnitudes of the likelihood functions are more
similar, a variety of strategies might be used selection of
the interpretation corresponding to the model with
highest peak likelihood, random selection between the
modes, with appropriately weighted probabilities (as
some have argued is done for other bimodal stimuli
such as Necker cubes) or a weighted average of the
modal interpretations. All of these strategies would
reflect themselves in subjects’ showing a decreasing
isotropy bias as a function of the amount of surface
texture compression.

In the present experiment, the range of texture com-
pression factors used was quite small, the largest being
30%. For such stimuli, the experimental finding of a
strong, but less than total isotropy bias is entirely
consistent with a rational strategy for interpreting fore-
shortening information. The analysis of the mixture
model does suggest some interesting predictions, how-
ever. It predicts that the isotropy bias should degrade
with increasing compression of surface textures. It also
predicts that field of view size should have a significant
effect on the degree to which isotropy biases interpreta-
tions. The larger the field of view, the greater the
information in the texture pattern that isotropy does
not apply. Finally, the analysis suggests a strongly
non-linear way in which other cues may interact with
texture information. In particular, other cues such as
stereo or motion could selectively support one or an-
other of the isotropy and anisotropy interpretations.
This effect would appear in the joint likelihood func-
tion for texture and other cues, given by the product of
the individual likelihood functions for texture and the
other cues. Were the modes of the likelihood functions
for other cues to be near one or another of the fore-
shortening modes, it would selectively enhance that
mode.

Our discussion of using foreshortening without as-
suming isotropy is predicated on the assumption that
subjects see surfaces as being planar, and in our exper-
iments, subjects generally reported seeing the surfaces
as planar. Without this assumption, or some similar
assumption of surface smoothness, the foreshortening
cue by itself would not provide enough information to
adequately constrain surface shape interpretation with-
out assuming isotropy. This suggests that scaling infor-
mation may contribute more heavily to shape from
texture perception when the visual system ‘turns off’
isotropy. The most general computational model of
shape from texture currently available, developed by
Malik and Rosenholtz, does not assume isotropy or
any other constraint on the spatial distribution of tex-
tures other than homogeneity. The model implicitly
uses all the available cues in a texture pattern to make
inferences about surface shape [22]. Even using all the
available cues, they find that they must impose some
form of local smoothness constraint (in their case, an
assumption that a surface’s gaussian curvature locally
constant), to constrain the reconstruction problem.

Whether the human visual system can interpret shape
from texture when textures are clearly anisotropic is
questionable [14], except in cases in which higher-order
texture information like skew or linear perspective is
available. The latter cues, of course, rely on constraints
on the spatial structure of surface textures similar to
isotropy; skew relies on a bilateral symmetry constraint
and linear perspective relies on a parallelism constraint.
This observation suggests that further work needs to be
done to understand all of the constraints underlying
human perception of surface shape and orientation
from texture. A complete model of human perception
of shape from texture will likely require a more com-
plex mixture of experts model which includes all the
prior constraints which human observers may impose
to interpret shape from texture.

6.4. Why not use scaling information?

Scaling information was given only a small weight in
the stimulus conditions used in the experiments. This
weight might well increase under large field viewing
conditions; however, it is not a-priori clear that it
should—the relative reliability of foreshortening and
scaling information does not change that much with
increasing field of view size (in the range from 12.5 to
30°) [12]. This result applies to the theoretical limits on
cue reliability. In practice, the dependence of scaling
cue reliability on field of view size will depend as much
on the visual system’s ability to resolve spatial differ-
ences in size as it does on the information content in
the stimulus.

One computational argument for using scaling infor-
mation is that many textures are not ‘insurface’, as were
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the ones used in these experiments. Scaling information
retains the same qualitative form for other types of
textures (e.g. rocks, grass), while the nature of fore-
shortening information changes dramatically. Elon-
gated objects perpendicular to a surface, for example,
exhibit decreasing foreshortening with increasing sur-
face slant, rather than the increasing foreshortening
exhibited by in-surface textures. Scaling information
may take on a greater perceptual weight for stimuli
composed of such textures than is found for in-surface
textures.

6.5. Future directions

The ideal observer methodology described here pro-
vides a powerful analytical tool for measuring cue
weights and for testing specific models of cue interpre-
tation. Our results have gone a long way towards
quantifying how humans judge planar surface slant
from texture, but many questions remain. We must
further measure performance for large field of view
surfaces. This will require using texture patterns pro-
jected onto real surfaces, as carried out by [2,3,7], to
minimize conflicts with other cues such as accommoda-
tion and blur. Furthermore, the micro-structure of how
the visual system imposes the isotropy constraint re-
mains to be clearly elucidated. The question of how the
visual system determines when to apply an isotropy
constraint is central to this problem. More generally,
the structure of the system of constraints imposed by
the visual system on surface textures, including con-
straints such as bilateral symmetry and parallelism,
needs to be elucidated.

7. Summary

We have introduced a novel technique for measuring
cue weights and for comparing different functional
models of cue interpretation. The technique is a form of
perturbation analysis in which the natural perturba-
tions in cue content are taken advantage of by back-
correlating  subjects judgements on a  slant
discrimination task with slant estimates derived from
different ideal observers. These sub-ideals use only one
or another of the available cues or rely on specific prior
assumptions not necessarily valid for all of a set of
experimental stimuli. Perhaps the greatest power of the
method is its ability to test different functional models
of cue interpretation, as in the test of whether subjects
imposed an isotropy constraint to perceive surface slant
in the experimental stimuli.

We found that subjects relied primarily on the fore-
shortening cue to discriminate slant from texture and
that they relied to varying degrees on an assumption of
isotropy. We also obtained evidence that the visual

system can use more than just second-order spatial
moments of texture patterns to perceive slant, even for
stochastic textures without any global structure. In
particular, subjects appeared to be able to rely in part
on the skew of rectangular texture elements to make
judgements of surface slant for textures composed of
randomly shaped and oriented rectangles.
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