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Abstract

Perspective views of textured, planar surfaces provide a number of cues about the orientations of the surfaces. These include
the information created by perspective scaling of texture elements (scaling), the information created by perspective foreshortening
of texels (foreshortening) and, for textures composed of discrete elements, the information created by the effects of both scaling
and foreshortening on the relative positions of texels (position). We derive a general form for ideal observers for each of these cues
as they appear in images of spatially extended textures, (e.g. those composed of solid 2-D figures). As an application of the
formulation, we derive a set of ‘generic’ observers which we show perform near optimally for images of a broad range of surface
textures, without special prior knowledge about the statistics of the textures. Using simulations of ideal observers, we analyze the
informational structure of texture cues, including a quantification of lower bounds on reliability for the three different cues, how
cue reliability varies with slant angle and how it varies with field of view. We also quantify how strongly the reliability of the
foreshortening cue depends on a prior assumption of isotropy. Finally, we extend the analysis to a naturalistic class of textures,
showing that the information content of textures particularly suited to psychophysical investigation can be quantified, at least to
a first-order approximation. The results provide an important computational foundation for psychophysical work on perceiving
surface orientation from texture. © 1998 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Gibson first pointed out fifty years ago that texture
patterns can provide strong monocular cues to 3-D
surface geometry [1]. More recent work has shown that
in some contexts, these cues can be almost as salient for
human observers as stereo [2,3] or motion cues [4].
While regular texture patterns such as checkerboards
clearly give the most compelling perceptions of surface
orientation and curvature, stochastic textures work well
as 3-D cues also (see Fig. 1). Since the information
provided by stochastic textures about surface geometry
is inherently statistical, an important part of our under-
standing of texture information is an understanding of
its theoretical limits. How reliably do different texture
cues determine judgments of surface geometry? How
does texture cue reliability vary as a function of under-

lying surface geometry? How does it vary as a function
of viewing conditions, or as a function of surface
texture properties? Answers to questions such as these
provide an important computational back-drop for in-
vestigations of human perception of shape from
texture.

In this study, I present an extended analysis of the
statistical limits on the information provided by image
texture patterns about planar surface orientation. It is a
companion article to a psychophysical study [5] in
which I investigate the limits of human ability to make
judgments about planar surface slant from texture in-
formation. I derive ideal observers which optimally use
texture information to estimate surface orientation and
describe the results of simulations designed to measure
the reliability of texture information in a variety of
stimulus conditions. I also derive a set of generic esti-
mators for different texture cues which we show to
perform near-optimally for a wide range of texture
ensembles.
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The work presented here is an extension of previous
ideal observer work [8,6,7,9] on the problem of shape
from texture in a number of ways. First, I generalize
the ideal observers from point element [8] and line-ele-
ment [6,7,9] models of surface textures to textures com-
posed of spatially extended texture elements. This
follows the natural progression from zero to one to two
dimensional texture descriptors. Second, I derive an
ideal observer for perspective scaling information, a cue
which has not, to date, been formally modeled in the
ideal observer framework. Finally, I derive a set of
generic ideal observers for different texture cues which
I will show to be near-optimal estimators of surface
orientation for a wide range of texture ensembles.

1.1. Aims of the study

Texture information is commonly decomposed into
three quasi-independent cues to surface orientation
and curvature: perspective scaling, foreshortening (or
compression) and density (but see [11] for a shape-
from texture method which does not, strictly speak-
ing, rely on any decomposition). This decomposition
will form the basic framework for my own work. I
will derive individual ideal observers for surface orien-
tation from each of the three cues and use these to
analyze and compare the information content of the
different cues.

The study is organized into six sections, including
this introduction. In the second section, I briefly re-
view the qualitative structure of texture information.
In the third section, I derive a general form for the
ideal observers for each of the three cues. The fourth
section relies on the general ideal observer formula-
tion to derive generic observers which I will later
show to be near-optimal estimators for surface orien-
tation from texture. The fifth section contains the
bulk of the analysis, based on ideal and generic ob-
server simulations. In this section, I will (1) compare
texture informativeness about surface slant (orienta-
tion away from the line of sight) and tilt (orientation
in the image plane), (2) analyze how changes in sur-
face texture structure affect the reliability of texture
information, including determining lower bounds on
the reliability of texture cues given certain qualitative
constraints on surface textures, (i.e. measuring the
least information a cue can possibly provide about
surface orientation given that textures are homoge-
neous and isotropic), (3) analyze the effects of field of
view on the reliability of the information provided by
the different texture cues and (4) analyze the impor-
tance of the isotropy constraint in determining the
informativeness of texture foreshortening information.
The final section of the study discusses the implica-
tions of the current results for computational models
and human psychophysics.

2. Qualitative properties of texture information

Two distinctly different processes give rise to texture
information in images. The first is the surface texture
generating process, which reflects itself in statistical
regularities in the ensemble of surface texture patterns it
generates. The second is the image formation process;
particularly, perspective projection, which maps surface
textures to image textures. For in-surface textures, we
can model image formation as mapping one 2-dimen-
sional scalar field to another (ignoring spectral informa-
tion)[12]. Assuming no marked shading effects on the
scale at which texture properties are measured, we can
describe image formation through the geometric distor-
tions imposed by perspective. The form of the distor-
tions are deterministically related to the shape and
orientation of a surface relative to an observer, (e.g.
scaling is inversely related to depth); thus, estimating
the shape and orientation of a surface amounts to
estimating the spatial pattern of texture distortion over
an image. For image textures projected from stochastic
surface textures, the problem is a classic problem in
statistical estimation. Any model of texture information
must therefore have two components: a deterministic
model of perspective texture distortion and a stochastic
model of surface textures. Combining the two, one can
arrive at a model expressing the statistical relationship
between image texture data and 3D surface geometry.
In this section, I give a brief, tutorial overview of both
components of the texture information model we use.

2.1. Perspecti6e projection

Gibson conceived of texture information as spatial
gradients of various types; density, size, etc. which arise
as a result of perspective projection. While this matches
our intuitions about texture information, it is only
exact for regular texture patterns. A more meaningful
way to interpret texture gradients is to treat the gradi-
ents which appear in images of regular textures as
illustrative of the underlying geometry of perspective
projection. In this view, while it is not appropriate to
characterize texture information per se in the form of
gradients, it is appropriate and very useful to character-
ize perspective projection in this way, using stereotypi-
cal texture patterns, such as arrays of circles, to
illustrate the distorting effects of perspective.

Locally, perspective projection distorts a texture pat-
tern in two distinct ways: by scaling the texture and by
distorting its shape. The ‘size’ of a local texture patch is
scaled by an amount inversely proportional to the
distance of the patch from the nodal point of the eye.
Similarly, the shape of the texture patch is foreshort-
ened by an amount proportional to the cosine of the
slant of the surface away from the local line of sight.
Both of these effects are first-order approximations to
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the local perspective distortion. They vary with spatial
position in a predictable way as a function of surface
geometry. For slanted, planar surfaces, distance from
the viewer changes as a simple function of position in
the image, as does local slant, since the angle of the
local line of sight changes across an image. These two
factors give rise to spatial variations in the local distor-
tion of a texture pattern.

2.2. Statistical structure of surface textures

The scaling and foreshortening components of the
local texture map (and their ‘gradients’) are not directly
available to an observer, who only sees the effects of
these distortions. Without exact a-priori knowledge of
the spatial structure of a surface texture, the form of
local distortion and hence the local 3D shape, cannot
be directly inferred from image data. Since most surface
textures are stochastic, the best any observer can hope
for is knowledge of the statistical properties of the
ensemble from which a surface texture is drawn. Such
knowledge supports statistical best guesses about the
local distortion. The two general statistical constraints
which can make texture informative are homogeneity
and isotropy.

2.2.1. Homogeneity
Homogeneity, formally defined, means that a

stochastic surface texture process is spatially stationary:
that the statistical relationships between points on the
surface depend only on their relative positions, not on
their absolute position in some global reference frame.
For most doubly-curved surfaces, homogeneity is very
difficult to define unambiguously1. For planar surfaces,
however, with which we are presently concerned, the
definition is straightforward: the statistics of homoge-
neous, planar textures are invariant to translations in
the plane of the surface. If a planar surface has a
homogeneous surface texture, then perspective projec-
tion induces particular spatial variations in the local
statistical structure of an image texture which are re-
lated to the slant and tilt of the surface. An observer
can, therefore, use variations in the sample statistics of
an image texture to make probabilistic inferences about
surface slant and tilt.

2.2.2. Isotropy
Isotropy refers to a lack of directional bias in the

statistics of surface textures. How isotropy is applied in
computational work varies from model to model, but
one can formalize a general meaning for planar textures

in terms of the marginal probability laws relating tex-
ture properties at different points in the plane (see, for
example, [14]). In particular, a strictly isotropic 2-di-
mensional texture process is one whose marginal proba-
bility laws are invariant to rotations of the coordinate
frame in which the process is defined. Isotropy is the
statistical analogue of exact knowledge of local texture
geometry; it allows an observer to infer the perspective
texture distortion locally, in this case, by using the
average amount of directional bias in a local patch of
image texture to infer the amount of foreshortening and
hence the surface orientation.

All researchers who deal with the problem of perceiv-
ing surface geometry from texture consider homogene-
ity a minimal assumption necessary to make image
textures informative. Prior knowledge of isotropy, when
appropriate, adds considerably to the informativeness
of textures. Not all textures are homogeneous and only
some of these are isotropic; however, one may well
assume that a large class of textures are homogeneous
and some sub-class of these are isotropic, so that both
the homogeneity and isotropy constraints would prove
useful to an observer, as long as they could test their
validity before applying them [9] (as is true of most
natural constraints: rigidity, symmetry, etc.).

3. Ideal observers for surface orientation from texture

I define an ideal observer for surface orientation
from texture to be the maximum likelihood estimator of
surface orientation from a set of image texture mea-
surements. My approach to the problem of deriving
ideal observers is to begin with a completely general
formulation of the likelihood function and gradually
refine it by defining first, a representational framework
for surface and image textures and second, a model of
perspective projection. This will lead to a more explicit
model of the likelihood function, which is incomplete
only in that it requires a specification of a prior
stochastic model of surface textures. I then show that,
given some independence assumptions on the surface
texture model, the likelihood function for surface orien-
tation from texture can be decomposed into the
product of three marginal likelihood functions, one
each for the three texture cues defined in the introduc-
tion. The different marginal likelihood functions serve
as the basis for three distinct ideal observers; again, one
for each cue. In the section following this one, I will use
the likelihood functions to derive a set of generic ob-
servers, which are designed to be near-optimal for a
large set of surface texture models.

The section is organized into four parts: a review of
previous ideal observer work, a derivation of the gen-
eral form for likelihood functions for surface orienta-
tion from texture, a specification of the major

1 Defining what it means to say that texture statistics are the same
everywhere on a surface is problematic for anything but constant-
Gaussian curvature surfaces [11] and even for those is limited when
the Gaussian curvature is other than zero [13].
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components of the general likelihood function, which I
will use as the basis for our analysis of texture informa-
tion and a decomposition of the likelihood function
into component likelihood functions for each of the
three texture cues.

3.1. Pre6ious ideal obser6er work

A number of authors have derived ideal estimators of
surface orientation from texture based on prior stochas-
tic models of surface textures. These formulations have
been limited to textures made up of independent point
elements or independent, oriented line elements [6–9].
The ideal observers were defined for surface texture
ensembles characterized by default prior models: inde-
pendent and uniform distributions for both position
and orientation. Given the qualitative constraints that
surface textures are homogeneous and isotropic, these
priors represent maximum entropy models of surface
texture processes; that is, they are the least constrained
prior models one can define (reflecting a principle of
least commitment to prior assumptions). The combina-
tion of point element and line element models forms the
most currently developed statistical ideal observer
model for shape from texture [10]. The model accu-
rately characterizes the information provided by the
density and foreshortening cues in images of textures
consisting of collections of independent and uniformly
positioned and oriented line elements on a surface.

Ideal observer models are distinguished by two fea-
tures. First, they are maximum likelihood estimators
(MLEs) for surface shape and orientation for particular
classes of textures; thus, they are optimal estimators (in
the minimal variance sense2) for the classes of textures
for which they were derived. Second, they typically deal
only with the inference component of the problem of
estimating shape from texture. They do not account for
the actual measurement of texture primitives from real
images; thus, they provide baseline measures of texture
information assuming the existence of some form of
ideal measurement system. Most existing models of
shape from texture do not fit the strict optimality
criteria of an ideal observer. This is in large part due to
the fact that many models integrate image measurement
with shape estimation [16–19,11], a context in which it
is difficult to define prior stochastic models of surface
textures and derive maximum likelihood estimators
from first principles. A review of these models is be-
yond the scope of this study.

3.2. The likelihood function for surface orientation
from texture

I define the ideal observer for estimating a set of
surface geometry parameters, Sb , from a set of image
texture measurements, Tb I, to be the maximum likeli-
hood estimator of Sb given the image measurements3.
For my purposes, Sb is the slant and tilt of a planar
surface relative to some global coordinate frame,
though, in general, it could include other parameters to
characterize the shapes of curved surfaces. We will
represent surface orientation as the slant-tilt pair, (s, t)
(slant is the absolute angle of the surface away from the
fronto-parallel plane and tilt is the angle it makes in the
fronto-parallel image plane). The maximum likelihood
estimator of surface orientation selects as its estimate
that value of the pair (s, t) which maximizes the likeli-
hood function, p(Tb I�s, t).

In order to derive a general form for the likelihood
function, we assume that the projective mapping from
surface texture parameters to measured image texture
parameters is one-to-one, differentiable and invertible
and write it as

Tb I=p(Tb S; s, t) (1)

where Tb S is a representation of the surface texture. We
further assume noise-free measurements of image tex-
ture parameters (so that the uncertainty in texture
information derives entirely from the random structure
of surface textures). This allows us to write a likelihood
function for Tb I conditioned on both surface slant and
tilt and on the surface texture, Tb S, as a delta function

P(Tb I�s, t, Tb S)=d(Tb I−p(Tb S; s, t)) (2)

We could use this likelihood function to estimate both
surface orientation and the surface texture parameters,
Tb S. This would amount to finding a solution which
satisfies Eq. (1); an underdetermined problem, since for
every surface orientation, there exists some set of tex-
ture parameters which will make the argument of the
delta function go to zero (by assumption of the inverti-
bility of p).

We are only interested in estimating the surface
orientation and do not care about the surface texture,
per se. One can, therefore, integrate out the surface
texture variables to arrive at a likelihood function for
surface orientation only,

p(Tb I�s, t)=
&

c

p(Tb I�s, t, Tb S) pT S
(Tb S) dTb S (3)

3 The maximum liklihood estimator of a variable Sb approximates
the maximum a-posteriori (MAP) estimator (which takes into ac-
count the prior distribution on Sb ) when the spread of the prior
distribution is much greater than the support of the liklihood func-
tion, a condition which is typically met when large numbers of image
measurements are available as data.

2 MLEs are only (provably) minimal variance estimators in the
limit as the sample size goes to infinity; however, textures with large
numbers of elements approximate this optimality condition.
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p(Tb I�s, t)=
&

c

d(Tb I−p(Tb S; (s, t)) pT S
(Tb S) dTb S (4)

where pT S
(TS) is the prior distribution of Tb S and c is

the space of possible values of Tb S. The result gives for
the likelihood function,

p(Tb I,�s, t)

=pT S
(Tb S=p−1(Tb ;(s, t))) det[JT(p−1(Tb ; s, t))] (5)

where p−1() is the inverse of the projection function
and JT(p−1()) is the Jacobian of p−1() with respect to
the image texture variables; that is, the matrix contain-
ing the first partial derivatives of p−1() with respect to
the image texture variables. pT S

() is the prior probabil-
ity on the surface texture parameters.

The two terms in Eq. (5) reflect the relative contribu-
tions of the prior stochastic model of surface textures
and of the projection model to the likelihood function.
The prior term gives preferential weighting to surface
orientations for which the back-projected surface tex-
ture best fits the stochastic model of surface textures
used to generate the stimuli. The Jacobian term rewards
surface orientations for which image texture measure-
ments are least sensitive to changes in the surface
texture parameters. This reflects a preference for orien-
tations which explain a broader range of possible values
for the surface texture parameters [20]. Specifying an
ideal observer for an ensemble of surface textures re-
quires a model of both components of the likelihood
function.

3.3. An explicit model of texture information

3.3.1. A moment-based texture representation
The first step in fleshing out a specific ideal observer

model for surface orientation from texture is to define
the primitive elements of which surface and image
textures are composed. Most psychophysical work on
the perception of surface layout from texture has relied
on textures composed of discrete elements (texels). Such
textures are particularly easy to synthesize for use in
experiments and to analyze using ideal observer analy-
sis; thus, we will follow in this tradition. In general,
texels can be quite complex in their shape, as is true for
the polygonal tiles making up the texture shown in Fig.
1. Thus, we require a set of measurements on both
surface and image texels which provide a description of
texel shape which on the one hand, is compact, and on
the other hand, can be derived for arbitrary texels
(polygons, closed, smooth curves, etc.).

In choosing a representational framework for charac-
terizing surface and image texels, I was driven by two
general constraints.
� The framework must support a complete model of

projection. Stating this formally, we must be able to
model the projection of a surface texel into the image

as a bijective mapping between the representation of
a surface texel, Tb S and the representation of the
image texel to which it projects, Tb I; that is, the
function, Tb I= f(Tb S; s, t) must be both on-to-one
and invertible (for a given surface orientation,
(s, t)). An example of a texel representation which
violates this constraint is one which specifies only the
dominant orientation of a texel, since the orientation
of a texel in the image is determined not only by the
orientation of the corresponding texel on the surface,
but also by its shape (except for infinitely thin line
elements).

� The parameters included in the representation of
image texels should be qualitatively similar to those
which could be plausibly derived from local mea-
surements of continuous textures. This will allow the
derived ideal observers to be applied to the outputs
of a putative texture measurement system.
The simplest parameterization of texel shape which

satisfies both constraints derives from the second-order
spatial moments of a texel. Moment-based formula-
tions, because of the ease with which they can be
estimated from image data, have recently been popular
as a basis for computational models of shape from
texture [9,19,21] and can be implemented using biologi-
cally plausible filter mechanisms [17]. I use an area-
based formulation of the second-order moments4,
which is characterized by the moment tensor,

M=

1
A
Ã
Ã

Ã

Á

Ä

& &
R

(x−x0)2 dA& &
R

(x−x0)(y−y0) dA

& &
R

(x−x0)(y−y0) dA& &
R

(y−y0)2 dA
Ã
Ã

Ã

Â

Å
(6)

where R is the region bounded by a texel, A is the area
of the texel, given by

A=
& &

R

dA (7)

and (x0, y0) is the center of mass of the texel, given by

(x0, y0)=
1
A(
& &

R

dA,
& &

R

ydA) (8)

In Appendix B, we show that the second-order mo-
ments of an image texel, MI, can indeed be expressed as
a bijective function of the second-order moments of the
corresponding surface texel, MS, independent of the
detailed shape characteristics of the texels (see Fig. 2).

4 A boundary-based formulation of second-order moments does
not support a general model of projection, due to the arc-length
foreshortening effects of projection. These effects will reflect them-
selves in different ways depending on the detailed shape of a surface
texel.
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Fig. 1. Examples of texture patterns which induce strong percepts of surfaces slanted in depth. In each of the two figures, one surface is
fronto-parallel and the other is slanted away from the fronto-parallel at 73°. The images in (a) were created by randomly drawing ellipses on a
surface. The images in (b) were generated from the Voronoi diagram derived from a random lattice of points (see Section 5.2.3 for a description
of Voronoi diagrams).
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3.3.2. The projection model
For in-surface textures, a natural way to model per-

spective projection is as a map between points on a
surface and points in the image, p :��V, where � is the
surface and V is the image. For planar surfaces, we can
easily characterize the projective map as a function, f(),
which maps a 2-D position vector on the surface (in a
coordinate system defined on the plane) to its corre-
sponding 2D position in an image (see Appendix A for
a derivation of f() for planar perspective),

Xb = f(u, 6)=
�x(u, 6)

y(u, 6)
�

(9)

where Ub = (u, 6)T represents position on the surface and
Xb = (x, y)T represents position in the image.

We can use this simple formulation of texture projec-
tion to derive a first-order approximation to the mapping
of a surface texel to an image texel (see Fig. 2). Define
a surface texel to be a bounded region on the surface,
RS��, and an image texel to be a bounded region in the
image, RI�V, which results from the projection of RS;
that is, RI=p(RS). Since I am representing image texels
by their second-order spatial moments, I am particularly
interested in specifying the mapping between the second-
order moments of a surface texel and the second-order
moments of its projection. In Appendix B, I show that
a first-order approximation of this mapping (exact in the
limit for infinitely small texels), is given by

MI=P−1MS(P−1)T (10)

where MI is the second-order moment tensor for the
image texel, MS is the second-order moment tensor for
the surface texel and P is the differential of the projective
map computed at the center of mass of RS. P is given by
the Jacobian of f(),

P=
:(x
(u
(y
(u

(x
(6

(y
(6

;
(11)

Appendix A derives P for the case of planar perspective.
I write the result here for a surface tilted in the vertical
direction (like a ground plane), expressed as a function
of the center of mass of an image texel, (x, y),

P=
�

1−
y
d

tan s
�
Ã
Ã

Ã

Á

Ä

1,

0,

−
x
d

sin s

cos s−
y
d

sin s

Ã
Ã

Ã

Â

Å

(12)

where s is the slant of the surface away from the
fronto-parallel.

The scalar term captures the effect of perspective
scaling. It is a decreasing function of height in the image
(texels shrink with height in the image). The non-constant
terms in the matrix represent the distortion of texel shape
induced by perspective foreshortening. Texels are com-
pressed in the vertical direction by an amount determined
by the height in the image, but are also skewed (for
x"O) by an amount determined by horizontal position,
as reflected in the off-diagonal term in P. Eq. (12) can
be easily generalized to surfaces with variable tilt by an
appropriate rotation of P,

P=
�

1−
y
d

tan s
��cos t,

sin t,
sin t

cos t

�
×

:1,

0,

−
x
d

sin s

cos s−
y
d

sin s

;
(13)

where t is the tilt of the surface.
Eq. (10) specifies the projection model which maps the

moment representation of a surface texel to the moment
representation of the corresponding image texel. As
shown in Appendix B, this mapping is independent (in
the infinitesimal limit) of the exact shape of a texel.
Perhaps the easiest way to visualize the projection model
is to consider how it distorts a unit circle on the surface.
If the circle is given by the implicit quadratic

(Ub −Ub 0)T(Ub −Ub 0)=1, (14)

then its image is the ellipse defined by the implicit
quadratic equation

(Xb −Xb 0)T(PT)−1P(Xb −Xb 0)=1 (15)

where (PT)−1P is the quadratic form of the ellipse and
Xb 0 is the projection in the image of Ub 0.

3.3.3. Decomposing the likelihood function
In this section, I will formalize the definitions of the

three texture cues by decomposing the likelihood func-
tion for surface orientation from texture into the product
of three marginal likelihood functions, one each for the
scaling, foreshortening and position cues. The basic

Fig. 2. Representing the shapes of irregular texels by their second-or-
der spatial moments amounts to fitting them with ellipses. A first-or-
der approximation to the mapping from surface texels to image texels
is an affine transformation between a fitted ellipse on the surface and
a fitted ellipse in the image.
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observation behind the decomposition is that represent-
ing texels by their second-order spatial moments
amounts to fitting the texels with ellipses. I can there-
fore reformulate the representation of a texel in terms
of the length, aspect ratio and orientation of its best-
fitting ellipse, as determined by the eigen-vectors of MS

(for surface texels) and MI (for their projections in the
image). This suggests a parameterization of surface
textures as sets of five-tuples, Tb S={(u1, 61, l1, u1, a1),
…, (un, 6n, ln, un, an)}, where (ui, 6i) specifies the position
of texel i, li its length, ui its orientation and ai its aspect
ratio. Similarly, for image textures, we can write Tb I=
{(x1, y1, l1, f1, a1), …, (xn, yn, ln, fn, an)}.

In order to decompose the likelihood function,
p(Tb I�s, t), into the product of a set of marginal likeli-
hood functions, we require a number of independence
assumptions. Most of these follow naturally from the
assumptions of surface texture homogeneity and
isotropy. By the definition of homogeneity, the texel
shape and size parameters must be independent of
position. Furthermore, if we assume isotropy, texel
orientation must be independent of length and aspect
ratio (since isotropy implies that the probability laws
characterizing a texture are independent of the orienta-
tion of the coordinate system in which it is defined).
Finally, I will assume that texel length (a scale parame-
ter) is independent of texel aspect ratio (a scale-invari-
ant shape parameter).

The likelihood function is given by the density
function,

p(Tb I�s, t)=p({xi, yi, li, fi, ai}�s, t) (16)

The independence assumptions support decomposing
the likelihood function into three marginal likelihood
functions, one for texel length, one for texel shape
(aspect ratio and orientation) and one for texel
position,

p(Tb �s, t)=p(�xi, yi, li, fi, ai}�s, t) (17)

p(Tb �s, t)=p({li}�s, t ; {xi, yi, fi, ai})

× p({fi, ai}�s, t ; {xi, yi}) p({xi, yi}�s, t)
(18)

The marginal distributions characterize the information
about surface orientation provided by the scaling,
shape and position, respectively. The decomposition
allows us to model individual ideal observers for sur-
face orientation from each of three texture cues (each
based on a different marginal likelihood function).

3.3.3.1. Size likelihood. For a given surface orientation,
we can back-project an image texel onto the surface,
giving a surface texel with length;

li= f(li ; xi, yi, fi, ai, s, t) (19)

where f() is simply one over the smallest eigen-value of

the back-projected quadratic form. Using the general
form for the likelihood function in Eq. (5), we can write
the likelihood for texel length as
p({li}�s, t ;{xi, yi, fi, ai})

=p({li= f(li ; xi, yi, fi, ai, s, t)}) Pn
i=1

(f(l1; …)
(li

(20)

For a given image texel position and shape, the back-
projected surface texel length is proportional to the
length of the image texel; therefore, we can write the
derivative as the ratio, li/li, giving for the likelihood
function,

p({li}�s, t ; {xi, yi, fi, ai})

=p({li= f(li ; xi, yi, fi, ai, s, t)}) Pn
i=1

li
li

(21)

3.3.3.2. Shape likelihood. The back-projection of an
image texel onto a surface with a given orientation
results in a surface texture whose shape can be ex-
pressed as a function of the shape and position of the
image texel and the slant and tilt of the surface,

(u1, ai)=g(fi, ai ; xi, yi, s, t) (22)

g(.) is a vector valued function giving the orientation
and aspect ratio of the surface texel (derived from the
quadratic form for the back-projected texel). The likeli-
hood function for texel shape is given by

p({fi, ai}�s, t ; {xi, yi})

=P
n

i
p((ui, ai)=g(fi, ai ; xi, yi, s, t))

× det[Jfiai
(g(fi, ai ; xi, yi, s, t))] (23)

p({fi, ai}�s, t ; ({xi, yi})

=Pn
i

�
p((ui, ai)=g(fi, ai ; xi, yi, s))

�(ui

(fi

(ai

(ai

−
(ui

(ai

(ai

(fi

��
(24)

Note that this likelihood function cannot be decom-
posed further into likelihood functions for texel orienta-
tion and aspect ratio, because the two texel properties
are confounded in the projective mapping to images
(the Jacobian is not diagonal).

3.3.3.3. Position likelihood. The back-projection of im-
age texel positions onto a surface is given by the inverse
of the projection function, p,

(ui, 6i)=p−1(xi, yi ; s, t) (25)

The likelihood function for position information is then
given by

p({xi, yi}�s, t)=p({(ui, 6i)=p−1(xi, yi ; s, t)})

× Pn
i

J(p−1(xi, yi ; s, t))
(26)
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p({xi, yi}�s, t)=p({(ui, 6i)=p−1(xi, yi ; s, t)}) Pn
i

(ui

(xi

(6i
(yi

(27)

A simple way to visualize the Jacobian is as the back-
projected area of a unit square in the image plane.

3.3.4. A note on notation
The ideal observer formulation I have just described

decomposes texture information into cues characterized
by one or another feature of image texels. In presenting
this work to others, however, I have found that people
find the image based terms for the texture cues more
confusing than the standard terms. I will therefore use
the terms scaling to refer to the information provided
by texel lengths and foreshortening to refer to the
information provided by texel shapes and orientations.
Because the texel position ideal is only loosely related
to density information, I prefer referring to texel posi-
tion information as such, rather than as density
information.

4. Generic observers

As a first application of the general form of the ideal
observers described above, I will derive a set of generic
estimators for surface orientation from each of the
three texture cues described above. The idea is to derive
estimators which assume as little prior knowledge as
possible about the prior surface texture model.

4.1. Scaling

The only absolute constraint one can impose on texel
lengths is that they are positive; thus the range of texel
length is the half-line, l\0. Much like Blake et al. did
for density and line element orientation, I will derive a
generic observer for scaling information by assuming a
maximum entropy prior for texel length, which, for
positive, real-valued variables, is the exponential distri-
bution ([22]). Thus, we have for the prior on l,

p(l)= 1
k e− l/k (28)

where k is a scale constant. Both the mean and stan-
dard deviation of this distribution are equal to k. The
likelihood function for texel length using the exponen-
tial prior is given by the equation

p({li}�s, t ;{xi, yi, fi, ai})

=p({ li= f(li ; xi, yi, fi, ai, s, t)}) Pn
i=1

li
li

(29)

p({li}�s, t ;{xi, yi, fi, ai})

= Pn
i=1

1
k exp[ f(li ; xi, yi, fi, ai, s, t)})/k ] Pn

i=1

li
li

(30)

recalling that f(li ; xi, yi, fi, ai, s, t) is the back-projec-
tion function mapping image texel length to surface
texel length. Eq. (30) has a free parameter in the prior
term, the scale constant, k. Since we do not want to
assume knowledge of the scale of the texture, we should
integrate the scale constant out to arrive at a truly
generic prior term. In order to do this, we need to
assume some prior density function for k. The natural
default prior for a scale variable is 1/k.

Integrating over k, we obtain for the prior term in
the likelihood function

p({li= f(li ; xi, yi, fi, ai, s, t)})

=
n !

[ %
n

i=1

f(li ; xi, yi, fi, ai, s, t)]n
(31)

We can express the denominator in terms of the aver-
age back-projected texel length, ml(s, t), giving for the
prior,

p({li= f(li ; xi, yi, ai, s, t)})=
n !
nn

1
ml(s, t)n (32)

and for the generic likelihood function for texel size
(after some algebraic manipulation),

p({li}�s, t ;{xi, yi, fi, ai})=
n !
nn Pn

i=1

li
ml(s, t) li

(33)

The appearance of the mean back-projected length in
Eq. (33) highlights the fact that the generic prior acts to
normalize the likelihood function, effectively rendering
the estimator scaleinvariant. The generic likelihood
function penalizes interpretations which give larger
variances, relative to the mean, of back-projected texel
lengths. This captures the heuristic intuition that per-
spective projection tends to increase the variance of
texel lengths, so that the best interpretation of surface
orientation should be the one corresponding to a mini-
mal variance for back-projected texel lengths.

4.2. Foreshortening

In order to derive a generic estimator for surface
orientation from foreshortening information, we must
include both the orientations and aspect ratios of texels
in the formulation. The isotropy constraint fully deter-
mines the prior distribution of texel orientations (a
uniform distribution). The distribution of aspect ratios,
however, cannot be known, a-priori. In order to derive
a generic estimator for the foreshortening cue which
makes full use of the information provided by texel
aspect ratios, I will define a general family of prior
distributions for aspect ratios and integrate the result-
ing likelihood function over the free parameters which
define the prior distributions within the family, much as
I did for texel length information. The design strategy
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is motivated by two general observations: first, the
probability density function for aspect ratios should
go smoothly to zero at either extreme. At one ex-
treme, for aspect ratios equal to zero, this follows
from the vanishingly small probability of having phys-
ical textures with zero width. At the other extreme,
for aspect ratios equal to one, the constraint derives
from the fact that the Jacobian for texel shape and
orientation has a singularity at one. Allowing a non-
zero probability density at one would lead to an ill-
conditioned estimator.

The general constraints just described have led us
to model the prior distribution of aspect ratios in a
transformed domain in which the range of aspect ra-
tios of [0, 1] maps to the range (−�,�). The simple
transform

x= loge

� a
1−a

�
(34)

achieves this. I will assume that the prior on x is
Gaussian with unknown mean and standard devia-
tion. The resulting family of priors for aspect ratio
covers a broad range; from roughly uniform to ap-
proximately Gaussian, but has the property that all
distributions in the family go smoothly to zero as the
aspect ratio approaches zero or one. This gives a
prior of the form

p(a ; mx, sx)= 1


2psx
exp

�
−

(x(a)−mx)2

2s2
x

n(x
(a

(35)

p(a ; mx, sx)=
1


2psx

exp
�

−
(x(a)−mx)2

2s2
x

n� 1
a−a2

�
(36)

where x(a) is given by Eq. (34) and mx and sx are the
mean and standard deviation of the transformed as-
pect ratio.

The likelihood function for foreshortening informa-
tion can then be written as

p({fi, ai}�s, t ;{xi, yi})

= Pn
i=1

1
p

p
�

ai=g(fi, ai ; xi, yi, s, t)
�(ui

(fi

(ai

(ai

−
(ui

(ai

(ai

(fi

��
(37)

p({fi, ai}�s, t ;{xi, yi})

=k Pn
i=1

1
sx

exp
�

−
(x(ai)−mx)2

2s2
x

n� 1
ai−a2

i

�
×
�(ui

(fi

(ai

(ai

−
(ui

(ai

(ai

(fi

�
(38)

where I have collected constants into a single term, k.
One can integrate out the free parameters in the

prior term to arrive at a likelihood function for the

foreshortening cue which depends on no prior knowl-
edge of the form of the prior distribution. To do this,
assume a uniform prior on mx and a 1/sx prior on sx.
The latter derives from the observation that values of
sx much greater than one lead to strongly bi-modal
distributions of aspect ratios, an unlikely occurrence
in the world. In point of fact, The exact form of the
prior has little effect on the resulting likelihood func-
tion for large numbers of texels—assuming a uniform
prior on sx changes the likelihood function only
slightly and leads to an estimator whose performance
is numerically indistinguishable from the estimator
derived here. Carrying through the integration gives

p({fi, ai}�s, t ;{xi, yi})

= Pn
i=1

� 1
sx(s, t)

�� 1
ai−a2

i

��(ui

(fi

(ai

(ai

−
(ui

(ai

(ai

(fi

�
(39)

where sx(s, t) is the sample standard deviation of the
transformed values of texel aspect ratios back-pro-
jected onto a surface with orientation, (s, t). Again,
the constants are collected into a single term, k, which
is irrelevant to the estimation problem. The final set
of derivatives in Eq. (39) are too cumbersome to write
out here, but they are relatively easy to derive. Note
that the prior term which appears in the likelihood
function, 1/sx(s, t)n, punishs interpretations which
correspond to broad distribution of back-projected,
transformed aspect ratios.

4.3. Position

The natural default prior for surface texel positions
is the one proposed by ref. [8] (in a slightly different
theoretical context) and used by ref. [10] in their ideal
observer work: that the fixed number of texels ap-
pearing in an image were ‘dropped’ onto a surface
uniformly and independently. The underlying proba-
bility for position in the plane of the surface is there-
fore uniform over the area of the surface; that is, it is
given by

p(u, 6)= 1
A (40)

where A is the area of the surface. The likelihood
function for texel position information derived from
this process is simply given by

p({xi, yi}�s, t)=
1

A(s, t)n Pn
i

(ui

(xi

(6i
(yi

(41)

where A(s, t) is the back-projected area of the image,
exactly the ideal observer derived by Kanatani and by
Blake et al. for texel position information. Note the
appearance of the back-projected area in the prior
term. This serves the same role for the generic texel
position estimator as the average back-projected
length served for the generic texel length estimator—
it renders the estimator scale-invariant.
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5. Simulations

I ran a number of simulations to analyze the infor-
mation content of texture patterns and to test the
efficiency of the generic ideal observers. For most of
the simulations, I used texture patterns composed of
random arrays of ellipses. These have the advantage
that the moment formulation of texture information is
complete for these textures—ellipses on surfaces pro-
ject to ellipses in the image and the shapes of ellipses
are completely characterized by their second-order mo-
ments. I also applied the models to analyze the infor-
mation content of a particular, naturalistic class of
synthetic textures; the Voronoi textures introduced by
[27] into psychophysical work. Fig. 1 shows examples
of both types of textures.

The simulations are organized into four sets. The
first set is used to sketch out the basic structure of
texture information for surface orientation. They deter-
mine lower limits on the reliability of texture patterns
and analyze the reliability of Voronoi textures, as a
special class of constrained texture patterns. The sec-
ond set of simulations is designed to test the general-
izeability of the generic observers by computing their
efficiency for estimating surface orientation for a vari-
ety of different classes of surface textures. The third
simulation set analyzes the role of field of view in
determining texture cue informativeness, looking not
only at how texture cue reliability changes with field of
view size, but also at how texture cue informativeness
depends on position in the image. The final set of
simulations studies the role of the isotropy constraint
in determining the reliability of foreshortening infor-
mation.

5.1. Methods

In order to measure the reliability of the information
provided by each of the three texture cues about planar
surface orientation, I simulated three different ideal
observers which, given a description of the texels con-
tained in a texture pattern, estimated the orientation of
the underlying surface from one or the other of the
cues. The ideal observers were modeled as maximum
likelihood (ML) estimators of surface orientation based
on each of the three marginal likelihood functions
described in Section 3. The ideal observers were
derived with complete knowledge of the prior structure
of the ensembles on which they were tested (using Eq.
(5) and the projection model described in Section 3).
The standard deviation of each ideal observer’s surface
orientation estimates, derived from Monte Carlo simu-
lations, served as a measure of the reliability of the in-
formation provided by that cue. The measure is akin to
the Fisher information measure, which specifies a theo-
retical lower bound on the standard deviation of an

estimator5 ([24]). Both provide exact bounds on an esti-
mator’s standard deviation in the limit as the number
of independent texture measurements goes to infinity.

Fisher’s measure of statistical efficiency provides the
standard comparator for measuring the efficiency of the
generic observers. Absolute efficiency according to this
formulation is given by the ratio of variances of two
estimators, one being the true ideal observer for a
particular ensemble of texture stimuli. For slant, this
would be

E=
Varideal[s ]
Vargen[s ]

(42)

where Varideal[s ] is the variance of slant estimates ob-
tained from the ideal observer and Vargen[s ] is the
variance of slant estimates obtained from the generic
observer. The true ideal observers for an ensemble are
distinguished from the generic observers by the fact
that they have complete knowledge of the ensemble
statistics. The generic observers may have only partial
or incorrect knowledge.

All of the simulations mimicked a condition in which
observers viewed a textured surface through a rectangu-
lar window fronto-parallel to the viewing direction. The
size of the window was 25°×25° of visual angle, except
for the simulations in which I systematically varied the
field of view of the observer. The images were con-
strained to contain 150 independent texels. Each stimu-
lus used in the simulations was generated in three steps.
First, a surface texture was randomly sampled from a
pre-defined ensemble of textures (corresponding to a
particular setting of model parameters). Second, the
texture was ‘rendered’ for a particular surface slant and
tilt using the spherical projection variant of the projec-
tion model described in Section 3. Finally, the rendered
stimulus was cropped by the spherical image of the
rectangular window described above.

The textures in Fig. 1 are examples of the stimuli as
they would appear rendered on a computer screen, with
the addition of a simulated window frame and a lower
lip on the surfaces, for realism.

5.2. Simulation set 1: basic properties of texture
information

5.2.1. Example likelihood functions
Fig. 3 shows example likelihood functions for each

of the three cues, computed for the image shown in
figure la. This image is drawn from a highly con-
strained ensemble of surface textures, much like those
used in the psychophysical experiments described in the
companion article [5]. The computed likelihood func-

5 Fisher information is an approximate upper bound on the value
of 1/Var [S. ] for any tmbiased estimator of S, thus it also provides a
lower bound on the standard deviation of an estimator.
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Fig. 3. Plots of likelihood functions for a specific texture stimulus, in this case, rendered with a slant of 65° relative to the fronto-parallel plane.
(a) and (b) show plots of the likelihood function for the scaling cue, (c) and (d) for the position cue and (e) and (f) for the foreshortening cue.
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tions were derived with complete knowledge of the
statistics of the ensemble of surface textures from which
the sample was drawn. The plots provide an illustration
of the relative informativeness of the different texture
cues about surface orientation, for the defined ensemble
of textures. The spreads of the three distributions,
assuming the stimuli are representative of the texture
ensemble, give an idea of the reliability of the information
about surface orientation provided by each cue.

As reflected in the orientation of the likelihood func-
tions, none of the three texture cues independently
specifies surface slant and tilt. Thus, knowledge of one
generally helps to estimate the other. Simulations, how-
ever, show the correlation between the two surface
orientation parameters to be very weak. Moreover, both
negative and positive correlations between slant and tilt
are found for different samples drawn from the same
ensemble and there is no systematic correlation between
estimates of slant and tilt, meaning that independent
information about slant or tilt will not bias estimates of
the other.

5.2.2. Simulation 1a: lower bounds on texture cue
informati6eness

Consider the following scenario. You are told that you
will view a series of images of textured surfaces oriented
away from you at some fixed slant and tilt. These images
have a fixed size and always contain a fixed number of
texels. You are further informed that the surface textures
from which the textures were projected conform to the
qualitative constraints of homogeneity, isotropy and
independence of texture elements. Finally, you are asked
to set a lower limit on the reliability of the texture cues
contained in the images. In order to solve this problem,
you would need to search the space of all surface texture
ensembles which match the specified constraints and find
the one(s) for which the ideal observers have the worst
performance. One might suspect that the worst possible
performance would be equivalent to guessing, but as we
shall show, this is not the case.

Searching the space of allowed texture ensembles is a
daunting task, however, one can take advantage of the
observation that the surface texture ensembles which lead
to the least informative images will, in some sense, be the
most irregular. I therefore conjecture that the surface
texture ensembles leading to the least informative stimuli
will be ones with maximal entropy, in some sense. In
order to set bounds on the reliability of the three texture
cues, therefore, I simulated ideal observers for surface
textures generated from the same maximal entropy priors
used to derive the generic observers, with the exception
of the prior model for texel shape. For texel shape, one
can take advantage of the fact that it is a two-dimensional
entity and reduce its informativeness by removing one of
the degrees of freedom in texel shape. Since orientation
is intrinsic to all possible texture elements, we can only
remove the shape dimension corresponding to aspect

ratio, by using line element textures.
For the position and foreshortening cues, the maximal

entropy priors we end up with are exactly those used by
Blake et al. for their analysis of the information content
of textures; thus, their information measures provide
lower limits on cue reliability; that is, they set the
worst-case limits on cue reliability. To my knowledge no
one has performed a similar analysis for scaling informa-
tion. As pointed out in the generic observer section,
however, one can define a maximal entropy prior distri-
bution for texel length—the exponential distribution,
with a randomly selected scale constant. This prior
defines the surface texture ensemble giving the least
reliable texel size information6.

Fig. 4 shows the standard deviations of ideal observer
estimates of surface slant and tilt for the maximum
entropy distributions of surface texel parameters. For the
particular field of view used (25°×25°), scaling informa-
tion is the least reliable, while the relative reliability of
the position and foreshortening cues depends on surface
slant. As pointed out by Blake et al., however, the
ordering of the cues varies as a function of field of view.
They showed that the relative reliability of foreshorten-
ing and position cues varied with the size of the field of
view: foreshortening dominated for small fields of view,
but position dominated for large fields of view. We will
take up this point further in the section on field of view
effects.

Note that in this worst case scenario, none of the
texture cues provide reliable constraints on surface slant
and tilt for surfaces slanted away at a small angle, but
they become much more useful cues at large slants.

5.2.3. Simulation 1b: 6oronoi textures
Rosenholtz and Malik (1994) [27] introduced into

shape from texture studies a synthetic model of surface
textures which generates highly naturalistic tiled textures
(see Fig. 1b). This section analyses the statistical structure
of such textures and shows that one can derive approx-
imate ideal observers for them. We do this partly to show
that the ideal observer formulation can be broadly
applied beyond textures composed of simple elliptical
elements and partly as a case study into what the relative
reliability of texture cues would be for textures in which
different texel properties (shape and size) emerge natu-
rally from a single underlying texture generation process.
For Voronoi textures, the ideal observers are approxi-
mate in the sense that they use only second-order spatial
moments of the polygonal ‘tiles’ which make up the
textures. Other, higher-order spatial moments could, in
theory, provide further information.

6 One might suggest using a maximal entropy prior defined for
some transformation of length, (e.g. log(length)). We have, in fact,
tried a variety of ‘broad’ priors on texel length, including uniform
priors, and found that none of them led to worse ideal observer
performance than the exponential model.
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Fig. 4. Plots of the standard deviations of ideal observer estimates of surface slant (a) and tilt (b) for the stimuli used in the the first set of
simulations. These measures represent worst-case scenarios for the viewing conditions used in the simulations (25°×25° field of view, 150 texels).
(c) shows the relative reliability of the information provided by the three texture cues about slant and tilt, expressed as the ratio of variances of
the two estimates.
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The textures introduced by Rosenholtz and Malik
are comprised of the polygons formed from a Voronoi
diagram [25], created by drawing polygons around texel
positions in the plane in such a way that each polygon
contains all points in the plane which are closer to a
particular texel position than to any other. I analyzed
the statistics of two classes of Voronoi textures; one
generated from an unconstrained model of texel posi-
tions (a 2-D Poisson process), the other generated from
a more constrained reaction-diffusion model [26], simi-
lar in spirit to a texture generation model used by [27].
The model simulated a continuous, repulsive inhibitory
field around each texel position which governed the
migration of texels over time. Samples of the process
drawn when it was in a steady state provided con-
strained random lattices for generating surface textures.

Within the moment-based formulation described
here, I represent each polygon in a Voronoi texture by
its second-order moments of inertia. Treating the result-
ing moment tensor as the matrix for the quadratic form
of an ellipse, one can compute its eigen-vectors and
eigen-values to derive the length, orientation and aspect
ratio of the polygon. Doing this for every polygon in a
large set of textures provides sample data to fit prior
distributions for the texel attributes used by the ideal
observers. Inserting these prior distributions into the
general ideal observer formulation gives appropriate
ideal observers for the scaling and foreshortening cues
contained within Voronoi textures. We measured sev-
eral sets of correlations to test the independence as-
sumptions built into the ideal observer formulation.
These included correlations between the sizes, orienta-
tions and aspect ratios of individual texels, as well as
correlations between the same properties of neighboring
texels. The only non-zero correlation found was be-
tween the lengths of neighboring texels. Even this corre-
lation, however, was quite low (r=0.11 for the
constrained Voronoi textures and r=0.08 for the un-
constrained textures) and dropped off quickly to zero
when more distant neighbors were considered. The
results support approximating the texel properties as
being independent.

The derived ideal observers were run on texture
descriptions computed from real Voronoi textures. I
further tested the fit of the derived ideal observers by
running them on elliptical element textures generated
with the same first-order statistics as calculated for the
Voronoi textures. These simulations gave essentially
identical results to the simulations using real Voronoi
textures, further validating the model. Fig. 5 shows the
results of the simulations. The pattern of relative reli-
ability between the cues is the same for both texture
ensembles, with the foreshortening cue being most reli-
able at all but the lowest slants.

5.2.4. Discussion
The most striking feature of the simulation results is

the marked increase in reliability of texture information
with increasing surface slant. The behavior holds re-
gardless of the surface texture ensemble used to gener-
ate stimuli and reflects the fact that the reliability of
texture information depends inherently on surface slant.
This result replicates a similar finding reported by Blake
et al. in their ideal observer work [10]. A second
property evident in the graphs which seems to hold
generically for all surface texture ensembles is that
texture provides a more reliable cue to surface slant
than it does to surface tilt. Malik and Rosenholtz [23]
also found this to be the case when running their
estimator on natural textures [27]. Note also that the
patterns of relative variance in estimates of slant and
tilt are qualitatively similar across the texture ensembles
tested here and was also borne out in numerous simula-
tions with other ensembles. This is not surprising since
the relative reliability of the information provided by
texture cues about slant and tilt is determined by the
geometry of the viewing situation, not the underlying
statistics of the texture ensembles.

It is also of interest to note the ordering of cue
reliability for the Voronoi textures. For both ensembles
simulated, foreshortening information was best, fol-
lowed by scaling and then by position. In Voronoi
textures, the variability in the sizes, shapes and posi-
tions of surface texels, which determines the reliability
of the three texture cues, is highly correlated, since all
three properties derive from a common generator func-
tion (the position generator). It seems likely that the
same will be true of most natural textures; thus, we
expect that the result has some degree of generality and
is probably more reflective of the behavior of natural
textures than the results obtained with the maximal
entropy texture models.

5.3. Simulation set 2: ideal and generic obser6ers
compared

In section 4, I derived a set of generic observers for
each of the three texture cues based on minimal as-
sumptions about the ensembles of surface textures for
which they might be used. In this section, I measure the
efficiencies of the three generic observers when tested
on stimuli generated from a wide range of surface
texture ensembles, with varying degrees of regularity. In
many cases, the prior statistics of the ensembles deviate
significantly from the unconstrained priors assumed in
the derivation of the generic observers. The true ideal
observers differ from the generic observers in that they
are derived with complete knowledge of the test ensem-
ble statistics; thus, they provide absolute limits on
performance of any estimator.
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Fig. 5. Reliability data for the three texture cues for two types of Voronoi textures. (a–c) shows standard deviations of the slant and tilt estimates
and the relative reliability of slant and tilt estimates as derived from each of the three texture cues for the unconstrained Voronoi textures
(generated from a 2D Poisson process). (d–f) shows similar data for the constrained Voronoi textures (generated from the constrained
reaction-diffusion process).

The section contains three sets of simulations. In the
first, I measured the efficiencies of the three generic
observers for the constrained ensemble of Voronoi tex-
tures used in simulation 1b. The other two sets of
simulations analyze the performance of the foreshorten-
ing and scaling generic observers on broader ranges of
texture stimuli. For conciseness, I will only describe the
results for slant estimation. Those for tilt were qualita-
tively the same.

5.3.1. Simulation 2a: 6oronoi textures
I ran Monte Carlo simulations of the generic observ-

ers for the Voronoi textures used in simulation 1b. Fig.
5a shows the standard deviations of slant estimates
derived for an ideal observer which had exact knowl-
edge of the prior distribution of texel shape, size and
position in the Voronoi textures (estimated from sam-
ples of the texture process). These distributions differed
from and were significantly more constrained than
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Fig. 5. (Continued)

those used to derive the generic observers7. Despite
these differences, the standard deviations of the generic
scaling and foreshortening observers’ estimates of slant
deviated only a little from those of the true ideal

observers. This is reflected in the high efficiencies for
these observers shown in Fig. 6.

The efficiency of the position generic observer was
much lower than that of the other observers. I suspect
that this results primarily from the fact that the generic
position observer (which is really a ‘density’ estimator)
does not take advantage of the isotropy constraint.
Images of textures constructed from constrained lattices
of texel positions carry information in the relative
positions of neighboring texels, with the local compres-
sion of distances in the tilt direction providing signifi-
cant information when the lattice is constrained to be

7 The distribution of texel lengths in the Voronoi textures was well
fit by a Gaussian distribution. That of texel aspect ratios was well fit
by a truncated (at 0 and 1) Gaussian. The distribution of texel
positions was characterized by the energy function for the reaction–
diffusion process used to generate random texel lattices, a much more
constrained process than the 2D Poisson process assumed for the
generic position observer.
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Fig. 5. (Continued)

isotropic. As we will see in section 5.5, the inefficiency
of the generic position observer for images of con-
strained isotropic texture lattices is of approximately
the same magnitude as the inefficiency of a foreshorten-
ing ideal observer which does not incorporate an
isotropy constraint.

5.3.2. Simulation 2b: scaling
I tested the generic observer for scaling information

on textures whose texel lengths were drawn from a
Gaussian distribution. I measured generic observer effi-
ciency for a range of prior distributions of texel lengths,

ranging from low to high variance distributions. The
absolute ideal observers for these ensembles were
derived assuming no prior knowledge of the absolute
mean of the length distribution. Fig. 7 shows plots of
generic and ideal observer performance as a function of
the standard deviation of surface texel sizes. As ex-
pected, the performance of both observers gets worse as
the variance is increased. More notably, the generic
observer performed almost as well as the ideal observer
over the entire range of texture ensembles tested, with
the lowest efficiency measured being 81%. The result is
particularly striking given the large discrepancy be-
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Fig. 6. Absolute efficiencies of the generic observers as a function of surface slant for the constrained class of Voronoi textures used to generate
stimuli for simulation 1b.

tween the Gaussian distributions of texel lengths in the
test ensembles and the exponential distribution used to
derive the generic observer. This hints at the general
applicability of the generic scaling observer derived
here.

5.3.3. Simulation 2c: foreshortening
In an initial test of the generic foreshortening ob-

server, I measured the efficiency of the observer for
ensembles of textures whose texel aspect ratios were
drawn from specific distributions in the family of distri-
butions used to derive the generic observer. The differ-
ence between the generic observer and the absolute
ideal observer for these ensembles was that the absolute
ideal had prior knowledge of the parameters defining
the prior distribution for each test ensemble, while the
generic observer did not. The efficiency of the generic
observer was above 80% for all of the test ensembles
used. The appropriate way to read this result is that,
within the context of the family of aspect ratio distribu-
tions used to derive the generic observer, prior knowl-
edge of the specific distribution used to generate texel
aspect ratios is not critical to the information specified
by foreshortening.

A better test of the generalizeability of the generic
foreshortening observer is to measure its efficiency for
ensembles of textures whose texel aspect ratios are
drawn from distributions not included within the
defined family of distributions. Fig. 8 shows the effi-
ciency of the generic observer for test ensembles whose
texel aspect ratios are drawn from Gaussian distribu-
tions with a range of aspect ratios (with a mean aspect

ratio of 0.5). The generic observer’s efficiency was
generally high (above 80%) in simulations using a wide
range of other Gaussian distributions of aspect ratios,
though it dipped as low as 64% in a few cases.

The results of the simulation set suggest a certain
degree of generalizability of the generic foreshortening
observer derived here. One can, however, easily create
‘strange’ prior distributions of aspect ratios which will
lead to lower efficiencies. For example, a bimodal dis-
tribution of aspect ratios with narrow peaks around 0.3
and 0.7 led to an efficiency of only 9%. High efficiency
in this case would clearly require prior knowledge of
the peculiarities of the specific aspect ratio distribution
for the texture ensemble, something which is unlikely to
be available in a general setting.

5.4. Simulation set 3: field of 6iew effects

Increasing the field of view (FOV) on a texture
pattern increases the information available for estimat-
ing planar surface slant. Two factors underlay this
effect. The first is a trivial one: increasing the field of
view increases the amount of texture visible. The sec-
ond and more interesting factor is the changing geome-
try of local texture distortions as a function of position
in the image. One can isolate this factor by considering
image textures with a fixed number of texture elements,
independent of field of view size.

The main dimension of interest in the image is the
direction of surface tilt (vertical, for images of ground
planes). Changes in field of view size in the perpendicu-
lar direction have only small effects on the information
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Fig. 7. Standard deviations of slant estimates for ideal and generic scaling observers as a function of the standard deviation of texel lengths on
a surface (expressed as a proportion of the mean texel length). The slant of surfaces used in these simulations was fixed at 65°. Texel lengths were
Gaussian-distributed, truncated at zero. The absolute ideal observer had full knowledge of the true prior for each texture ensemble, with the
exception of the mean length. The dotted curve shows the absolute efficiency of the generic scaling observer, which can be read off of the
right-hand axis.

content of texture patterns. For simplicity, I will consider
field of view effects on the problem of slant estimation
for surfaces with a vertical tilt. The results and discussion
do, however, generalize to the estimation of tilt as well
as slant.

Blake et al. (1993) [10] have shown that increasing the
field of view on planar, slanted surfaces increases the
reliability of both texture density and texture foreshort-
ening information, even when the number of texels (or
texture measurements) remains fixed. This makes intu-
itive sense—we tend to think of texture information
being carried by differences in texture properties in ‘near’
and ‘far’ parts of an image. It therefore stands to reason
that increasing the field of view, which increases the total
range of these differences, should increase texture reli-
ability. This simple observation, however, is complicated
by the fact that the texture information from different
parts of an image is more or less effective in determining
surface orientation estimates. The first few simulations
described in the paper make clear the fact that texture
cue reliability increases with increasing surface slant.
Thus, a window on the upper half of a ground plane will
provide more reliable information about surface orienta-
tion than a similar sized window on the bottom half, even
if the number of independent texture measurements
available from the two windows is equal. This is because
the local slant of points on a ground plane increases with
height in the image (to 90° at the horizon).

To illustrate the point I performed a set of three

simulations using the textures with the same statistics as
the constrained Voronoi textures introduced in Section
5.2.3. In the simulations I began with a 5° FOV image
of a surface slanted away from the line of sight at an angle
of 65° vertically (measured relative to the line of sight
from the fovea). I then increased the field of view in three
different ways; symmetrically around the center line,
strictly downwards and strictly upwards. The results are
shown in Fig. 9. The greatest advantage clearly derives
from the upward expansion of the field of view. The
downward expansion does not improve the scaling cue
and leads to an actual decrease in performance for the
foreshortening cue.

The results shown in Fig. 9 can be explained by noting
how texture information is redistributed in the simula-
tions as the field of view is expanded in different
directions. As the field of view is expanded upward, the
texture information is distributed over regions of the
surface with larger local slants, while the opposite is true
as it is expanded downwards. For the downward expan-
sion, the distribution of texture into regions of the image
which are less informative mitigates the advantages
gained for the scaling and position cues by having a larger
field of view. For the foreshortening cue, which is
inherently local, the redistribution of texture information
makes the cue less reliable, as its reliability depends
simply on local surface slant.

In these simulations was held the number of texels
constant across changes in field of view size. In natural
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Fig. 8. Standard deviations of slant estimates for ideal and generic foreshortening observers as a function of the standard deviation of texel aspect
on a surface. The slant of surfaces used in these simulations was fixed at 65°. Texel aspect ratios were Gaussian-distributed, truncated at zero and
one. The absolute ideal observer had full knowledge of the true prior for each texture ensemble. The dotted curve shows the absolute efficiency
of the generic foreshortening observer, which can be read off of the right-hand axis.

viewing, where increasing the field of view leads to more
texture data, it should improve estimation performance.
The results described here, however, point to the fact that
the optimal window on a planar surface is over the
furthest part of the surface. Looking at the horizon is,
in the limit, the most informative view one can have
about surface orientation for surfaces known to be
planar. In the real world, an observer must trade off this
consideration with the decreased likelihood that the
planarity constraint will hold over large distances.

5.5. Simulation set 4: the importance of the isotropy
constraint

Up to this point in the analysis, I have only considered
isotropic surface textures. Many models of shape-from-
texture assume isotropy, but it is not necessary to do so
to use the foreshortening cue for estimating surface shape
or orientation under perspective projection. The amount
by which a texture pattern is locally foreshortened
changes with position in the image, an effect which
derives from the fact that at any given point in the image,
the orientation of a surface relative to the local line of
sight depends both on the global orientation of the
surface and the angle of the line of sight to that point.
The resulting ‘gradients’ in foreshortening provide infor-
mation about surface slant even without prior knowledge
of isotropy. Malik and Rosenholtz [11], for example,
have developed a computational model which uses spa-
tial differences in the texture distortion induced by

perspective to estimate surface shape. Such a model
would be particularly useful when applied to textures
which are not, in fact, isotropic.

This raises the question of how sensitive the foreshort-
ening cue is to prior knowledge of surface texture
isotropy. To answer that question I compared the
performance of a sub-ideal observer which does not
assume isotropy to an ideal observer which has prior
knowledge of isotropy. In particular, the ‘foreshortening-
without-isotropy’ ideal observer assumes that surface
textures could be uniformly stretched or compressed by
some global affine transformation before projection into
the image. The affine transformation is parameterized by
two values: the direction and amount of compression.
These two parameters characterize the global ‘shape’ of
a texture pattern. The foreshortening-without-isotropy
ideal observer simultaneously estimates both the orienta-
tion of a surface and the global shape parameters of its
surface texture.

Fig. 10 illustrates the uncertainty induced by discard-
ing knowledge of isotropy. The figure shows a plot of the
foreshortening cue likelihood function as a function of
surface slant and the amount of surface texture compres-
sion. The tilt here is fixed at vertical and the direction
of compression is in the direction of tilt. The likelihood
function was derived from a stimulus pattern similar to
those used in simulation 1b. The plot shows a strong
correlation between estimates of surface texture compres-
sion and surface orientation, even for the large field of
view used to create the stimulus image. The strength of
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Fig. 9. Standard deviations of slant estimates for the three ideal observers as a function of field of view size. The field of view was varied in three
different ways—by growing it symmetrically around the center of fixation, by growing it upwards, away from the center of fixation (towards the
horizon) and by growing it downwards from the center of fixation. The simulated surfaces were at 65° from the fronto-parallel and contained 150
texels each.
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Fig. 10. The likelihood function generated by the image of a surface
texture at 65° slant, expressed as a function of surface slant and
amount of global texture compression. Smaller values of compression
correspond to the surface texture being stretched in the direction of
tilt; thus, for a given image texture, an estimator which selected a
small value of texture compression would have to compensate by
estimating the slant to be larger than it is. The stimulus was generated
using the same texture parameters and viewing parameters as used for
the simulations described in the text.

results of the simulation. Removing prior knowledge of
isotropy increased the standard deviation of observer
estimates by roughly 4-fold for slants much greater
than zero. We have replicated this effect with a number
of other texture ensembles. Decreasing the field of view
size should lead to an even greater decrement in perfor-
mance between the true foreshortening ideal observer
and the foreshortening-without-isotropy ideal ob-
server—for isotropic surface textures. Were surface
textures to be generated by a process which induces
random amounts of anisotropy (texture compression),
of course, the foreshortening-without-isotropy ideal ob-
server would be the true ideal observer and would
perform better than the foreshortening ideal observer
which incorrectly assumed isotropy.

6. Conclusions

I have derived a general formulation for ideal observ-
ers for estimating planar surface orientation from tex-
ture for three different texture cues—perspective
scaling, foreshortening and position. The formulation
extends previous ideal observer work in the area in two
important ways. First, it includes the ideal observer for
perspective scaling information. Second, it generalizes
previous formulations of the foreshortening ideal ob-
server from simple line element textures to textures
composed of spatially extended elements. The current

the correlation reflects the importance of the isotropy
assumption in constraining estimates of surface orienta-
tion.

In order to quantify the power of the isotropy con-
straint, I ran the foreshortening-without-isotropy ideal
observer and the true ideal observer on stimuli gener-
ated from isotropic surface textures (using the same set
of stimuli used in Section 5.2.3). Fig. 11 shows the

Fig. 11. Plots of the standard deviation of ideal observer estimates of surface slant for stimuli like those used in simulation 1, as a function of
surface slant. The two ideal observers shown are ones which use foreshortening information, either with or without prior knowledge that the
surface texture ensemble was isotropic. The ideal observer which did not have such prior knowledge simultaneously estimated surface orientation
and the amount and orientation of global surface texture compression. The dotted line shows the absolute efficiency of the foreshortening-without-
isotropy ideal observer. The increase in efficiency at 0 degrees slant is probably due to the compressive nature of the slant scale.
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formulation is more broadly applicable to region-based
texture measurements such as spectral moments, while
the previous formulation naturally lent itself to edge
based measurements. The former is more robust, since
it does not suffer from the sampling problems induced
by arc-length foreshortening of contours.

I have further derived a set of generic observers for
the three texture cues. Simulations have shown that the
generic observers for perspective scaling and foreshort-
ening are near-optimal estimators of planar surface
orientation for a large range of texture ensembles. This
result has two important implications. First, it shows
that the generic observers may be broadly applicable in
computer vision applications, when applied to real tex-
ture measurements. Second, it validates the results of
the ideal observer analyses presented here, suggesting
that they will generalize to the performance of other
orientation-from-texture estimators.

In this concluding section, I will discuss the implica-
tions of the ideal observer analysis for human percep-
tion of planar surface orientation from texture. I will
also discuss the implications of the results for estimat-
ing surface curvature of non-planar surfaces.

6.1. Implications of results

6.1.1. The effect of surface slant
Simulations show that all three texture cues become

more reliable with increasing surface slant. The geome-
try of the slant-tilt representation suggests this result
for tilt, since at low slants, large changes in tilt corre-
spond to only small changes in the surface normal
vector (small displacements on the Gaussian sphere). In
the limit, as surface slant goes to 0°, tilt becomes
undefined and hence completely ambiguous. The situa-
tion is more complicated for slant. The changing reli-
ability of slant estimates derives from the geometry of
the texture projection (see Section 5.4 for discussion).

In psychophysical experiments, we have found that
human subjects’ ability to discriminate surface slant
from texture improves markedly with increasing surface
slant, from 30 to 40° at 0° slant to 1–2° at 70° slant.
This mimics the changing reliability of the information
available for estimating slant. Together, the theoretical
and psychophysical results suggest that the visual sys-
tem should weight texture information relative to other
cues differently as a function of slant. The size of the
effect suggests that texture cues should be weighted
more as surface slant increases, though this result de-
pends on the results of a similar analysis of the infor-
mation provided by the cues with which texture is
combined, (e.g. stereo, motion, etc.).

6.1.2. Cue weighting
One of the issues that one would like to resolve from

the ideal observer analysis is the relative informative-
ness of the different texture cues and how this varies in

different viewing conditions. No simple resolution to
this is available, since the reliability of the cues can vary
independently of one another with changes in surface
texture statistics. The question, then, is which are most
reliable in images of natural textures—a question
which is clearly beyond the scope of this paper. The
only hint that we have regarding the relative reliability
of the three cues is from the simulations of the Voronoi
textures. In these textures, the statistics of the different
surface texture properties on which the cues rely derive
from a common generator function (the position gener-
ator). Thus these statistics co-varied, leading to a co-
variation in texture cue reliability across different
ensembles of Voronoi textures. For the Voronoi tex-
tures, the relative reliability of the three cues remained
fairly invariant over the different ensembles tested. One
might well expect this to be the case for natural textures
-rarely does one expect to find textures which have little
variance in one or another shape property with high
variance in another. For the Voronoi textures, the
position cue was significantly less reliable than either
the foreshortening or scaling cues, with the reliability of
the latter two being similar, though that depended on
the field of view (see below).

That the position cue is least reliable is consistent
with the psychophysical literature [15,28,29] which sug-
gests that position information (usually referred to as
density information) receives little to no weight in
perceptual judgments. Other psychophysical work
[2,30,31] suggests that foreshortening information is
weighted at least as heavily as scaling information and
in most contexts tested, is weighted more heavily. This
is consistent with the finding in our simulations that
foreshortening information was somewhat more reliable
than scaling for the textures simulated; however, the
generality of this result must be qualified by the con-
cerns mentioned previously. I suspect that foreshorten-
ing information may be given more perceptual weight
for reasons other than its theoretically determined reli-
ability. For example, foreshortening information in-
heres locally in a texture (when isotropy applies),
making it more informative in limited fields of view. It
also is more informative for curved surfaces (see Sec-
tion 6.2 below).

I should note, finally, that I have decomposed texture
information in a very particular way. One need not
decompose the information provided by texel shapes
into foreshortening and scaling, as we have. The logic
behind the decomposition is that the cues derive from
separable effects of perspective distortion. A stronger
case can be made by noting that one should distinguish
scale-invariant shape information (which we have re-
ferred to as foreshortening) from size information (scal-
ing), since the two rely on dissociable constraints on
surface textures. In particular, application of an
isotropy constraint is limited to the information pro-
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vided by scale-invariant shape information. One could,
however, derive different parameterizations of texture
information in which foreshortening and scaling infor-
mation are confounded. Malik and Rosenholtz [11], for
example, characterize texture information implicitly as
the affine relationships between neighboring regions in
an image. Which representation best approximates hu-
man visual processing is a difficult challenge for future
psychophysical work (see [32] for a first cut at testing
what parameterization the visual system uses for esti-
mating surface curvature from texture).

6.1.3. Field of 6iew effects
The simulations in which we analyzed the effects of

field of view have two major implications. First, to the
extent that spatial integration of texture information is
limited, attention should be focused on further parts of
a surface to obtain reliable texture information about
surface orientation, since it is there that the most
reliable information about surface orientation is to be
found. This observation is limited however to situations
in which surfaces are constrained to be planar, or near
planar. Somewhat surprisingly, particularly for a gradi-
ent cue like perspective scaling, increasing the field of
view by including regions of the image in which the
surface is closer to the observer (the bottom of images
of ground planes) adds little to the informativeness of
the texture information, except what is gained by ob-
taining more texture samples. Second, the relative reli-
ability of different texture cues varies with field of view.
Blake et al. [10] originally pointed this out in their
analysis of foreshortening and density information. Not
surprisingly similar observations pertain to scaling in-
formation. Blake et al. [30] have tested for an effect of
field of view on the relative informativeness of texture
cues and found no significant effects, with foreshorten-
ing being given the most weight by subjects under both
small and large fields of view.

6.1.4. Isotropy
Throughout most of this paper, I have implicitly

assumed isotropy in deriving estimators for surface
orientation from texture and in our analysis of the
reliability of foreshortening information. In the final set
of simulations I relaxed this assumption by assuming
that surface textures could be globally compressed by
arbitrary amounts. The resulting ideal observer is ap-
propriate for images of such anisotropic textures, how-
ever, is not ideal for isotropic textures. The results of
the simulations showed it to be a very inefficient esti-
mator of surface orientation for textures which are
isotropic (4% efficiency for most surface slants). This
testifies to the power of the isotropy constraint, when it
is appropriate. Psychophysical data suggests that the
human visual system applies an isotropy constraint to
interpret planar surface orientation from texture

[2,27,31], though, the strength of the constraint remains
an open question.

The power of the isotropy constraint and the obser-
vation that not all textures are isotropic suggest that a
worthwhile estimation strategy is to simultaneously esti-
mate surface orientation and test the isotropy con-
straint. Applying a statistical estimation approach as
used here provides a framework for testing assumptions
such as isotropy [9,33]. An interesting question which
arises is whether the human visual system can dynami-
cally determine the applicability of a constraint like
isotropy from image data.

6.2. Generalization to cur6ed surfaces

The current paper has focused entirely on planar
surfaces. One can, however, extend the results to some
degree to curved surfaces. The ideal and generic ob-
server formulation generalizes naturally to curved sur-
faces. One need simply replace the slant and tilt
parameters in the model with appropriate shape
parameters to characterize curved surfaces. The major
limitation of this approach is that it requires a global
parameterization of surface geometry. Since our major
concern has been with analyzing the information con-
tent of texture, such a limitation is unavoidable and
entirely appropriate. For computer vision applications,
however, the limitation may be overly constraining and
it is likely that ideal observer formulations like the one
presented here will only be applicable in pure form to
very constrained domains and will have to be integrated
with more heuristic techniques in actual application.

Other authors, (e.g. [29]) have commented on the fact
that foreshortening information is significantly more
salient for curvature estimation than is scaling informa-
tion. This derives, for isotropic textures, from the fact
that foreshortening is a local cue, whereas scaling re-
quires significant changes in depth to be informative.
Psychophysical work has confirmed the relative impor-
tance of foreshortening information for the perception
of curvature [29,32,34]. The salient portion of the cur-
rent analysis, therefore, pertains to foreshortening in-
formation. Two aspects of the results have implications
for curvature perception—the effect of surface slant on
texture reliability and the importance of isotropy for
the foreshortening cue.

Just as the orientation of planar surfaces becomes
less ambiguous with increasing surface slant, so to
should the curvature of surfaces. One often has the
phenomenal percept in images of curved, textured sur-
faces that the curvature of those parts of the surface
which are highly slanted away from the line of sight is
much clearer than in other parts of the surface. For
particular classes of surfaces, the observation suggests
that certain viewing conditions will be more informative
than others. For example, cylindrical surfaces oriented
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out of the fronto-parallel plane should give rise to
texture information which is much more reliable than
cylindrical surfaces oriented in the fronto-parallel
plane (as are typically used in psychophysical experi-
ments).

The current analysis suggests a dramatic effect of
violating isotropy on shape from texture perception.
Some corroboration of this prediction has been ob-
tained in psychophysical studies [34], though other re-
sults [32] suggest that the isotropy assumption may
apply primarily to the determination of local surface
tilt. Since the curvature in the stimuli used in the
former study was entirely captured by spatial deriva-
tives of slant (images of cylinders oriented in the
fronto-parallel plane), the existing studies do not re-
solve the question of what role is played by isotropy
in the interpretation of surface curvature from tex-
ture.

Appendix A

For the ideal observer simulations described in the
text, I used spherical perspective as the model of per-
spective projection; however, the effects of perspective
projection are easier to visualize using the more stan-
dard planar perspective. In this section, I will there-
fore derive the perspective map and its differential
planar perspective. For ease of exposition, we will
temporarily assume a fixed surface tilt in the vertical
direction. A natural coordinate frame for surfaces
slanted away from the viewer in a vertical direction is
given by the basis set,

{e� 1, e� 2}={(1, 0, 0)T,(0, cos s, sin s)T} (43)

where the global slant s is measured relative to the
fronto-parallel (the x–y plane of the 3-D reference
frame). Position in the surface plane is then specified
by the 2-D coordinates, U. = (u, 6)T, where positions
in the plane are mapped to positions in 3-D world
coordinates by X. w=u ê1+6 ê2.

Assuming that the surface is a distance d from the
center of projection and that projection is onto a
fronto-parallel projection surface at the same distance
d from the center of projection, we have for the im-
age coordinates of a point on the surface
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The differential of the projective map is given by the
matrix
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which can be re-formulated in terms of projected po-
sition in the image as

P=
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y
d
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;
(46)

the equation used in the text.

Appendix B

I derive here the relationship between the second-
order spatial moments of a surface texel and its pro-
jected image. A surface texel is a simple bounded
region on the surface, RS, which projects to an image
texel defined as a bounded region in the image, RI.
Points in RI are related to points in RS by the equa-
tion

Xb = f(Ub ) (47)

where Xb is position in the image plane and Ub is
position on the surface. One can approximate the
mapping of points within a surface texel to the image
by a Taylor series expansion of f() around the center
of mass of the texel. Discarding the higher-order
terms, we obtain the affine approximation,

Xb = f(Ub 0)+P(Ub −Ub 0)+R(O2) (48)

where Ub 0 is the center of mass of the surface texel
and P is the Jacobian of f(), computed at Ub 0 (see
Appendix A for a derivation of P).

The second-order spatial moments (moments of in-
ertia) of an image texel are given by the matrix

MI=
1
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& &
R I
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where AI is the area of the image texel, Xb 0 is the center
of mass of the image texel and dAI is a differential area
element in the image. In order to derive the relationship
between MI and MS (the moments of the surface texel),
we first need to derive terms for the area and the center
of mass of an image texel.

The area of an image texel is given by

AI=
& &

R I

dAI=
& &

(x,y)�R I

dx dy (51)

Transforming variables from image coordinates to sur-
face coordinates, we obtain for the area

AI=
& &

(u,6)�R S

det(P(u, 6)) du d6 (52)

where, as before, P is the Jacobian of the coordinate
transform. Since we approximate the projection of
points within a texel to be an affine transformation, P
is constant and we obtain

AI=det(P) AS (53)

where AS is the area of the surface texel.
The center of mass of an image texel is given by

Xb 0=
1
AI

& &
(x,y)�R I

Xb dx dy (54)

Again changing variables to surface coordinates and
substituting det(P)AS for AI, we obtain

Xb 0=
1

det(P) AS

& &
(u,6)�R S

[ f(Ub 0)+P(Ub −Ub 0)] det(P)

× du d6 (55)

Xb 0=
1

AS

�& &
(u,6)�R S

f(Ub 0) du d6

+P(
& &

(u,6)�R S

Ub du d6−
& &

(u,6)�R S

Ub 0du d6)
n

(56)

By the definition of the center of mass, the second term
in the expression goes to zero and we are left with

Xb 0=
1

AS

& &
(u,6)�R S

f(Ub 0) du d6 (57)

Xb 0= f(Ub 0) (58)

that is, the center of mass of the image texel is simply
the projection of the center of mass of the surface texel.

It is now straightforward to derive the relationship
between the moments of an image texel and its corre-
sponding surface texel. A change of variables in Eq.
(50) from image to surface coordinates gives

MI=
1
AI

& &
(x,y)�R I

(Xb −Xb 0)(Xb −Xb 0)T dx dy (59)

MI=
1

det(P) AS

& &
(u,6)�R S

P(Ub −Ub 0)(P(Ub −Ub 0))T

× det(P) du d6 (60)

MI=P
� 1

AS

& &
(u,6)�R S

(Ub −Ub 0))(Ub −Ub 0)T du d6
n

PT

(61)

The integral term is simply the expression for the
second order moments of the surface texel, so we have,
finally,

MI=PMSPT (62)
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