
12 J. Opt. Soc. Am. A/Vol. 18, No. 1 /January 2001 David C. Knill
Contour into texture: information content of
surface contours and texture flow
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Both surface contours and texture patterns can provide strong cues to the three-dimensional shape of a surface
in space. Many of the most perceptually salient texture patterns have a strong flowlike structure, resulting
from the directional nature of the surface textures from which they project. Under the minimal assumption
that an oriented surface texture is homogeneous, the texture flow on a developable surface can be shown to
follow parallel geodesics of the surface. The geometry of texture flow is therefore equivalent to that of an
important class of surface contours: those that project from parallel geodesics of a developable surface. I
derive a set of differential equations that support the estimation of surface shape from geodesic surface con-
tours under spherical perspective, for both parallel and nonparallel contours. For perfectly oriented textures,
the equations apply directly to the integrated flow lines in a texture image. For weakly oriented textures,
perspective projection distorts the projected orientation of flow lines away from the idealized case of pure con-
tours; however, simulations show that for a large class of textures, these distortions will be small and limited
largely to extreme surface poses. The geometrical analysis, along with a number of phenomenal demonstra-
tions and psychophysical results, suggests that the human visual system co-opts shape from contour mecha-
nisms to estimate surface shape from texture flow. © 2001 Optical Society of America

OCIS codes: 330.4060, 330.5020, 150.0150.
1. INTRODUCTION
The projected images of surface markings provide strong
cues to the shapes of surfaces, in the form of either con-
tours or texture patterns (see Fig. 1). Researchers have
generally categorized these cues into one of two classes,
contours or texture, and have studied these cues within
distinct computational and geometric frameworks. Ho-
mogeneous, oriented textures, however, flow over a sur-
face in much the same way as contours; thus one might
expect that the visual system would use a common
mechanism for the recovery of shape from surface con-
tours and shape from texture flow (see Figs. 2 and 3). I
will show that the natural definition of homogeneity im-
plies that oriented surface textures flow along parallel
geodesics on developable surfaces; that is, the texture
flows along curves that, when a developable surface is un-
folded to be flat, are parallel and straight. Parallel geo-
desics on developable surfaces are also a natural class of
surface markings, or edges. Straight lines on a ruled
piece of paper are parallel geodesics of any surface formed
by folding the paper. This paper analyzes the geometry
of contours and texture flow lines that project from such
curves and shows how they can be used to estimate sur-
face shape.

The first part of the paper deals with the problem of es-
timating surface shape from contours that project from
geodesics of developable surfaces (curves that unfold to
straight lines when a developable surface is flattened).
For generality, I will analyze the geometry of contours
that project from nonparallel geodesics (e.g., the sides of a
corner of a folded piece of paper) as well as parallel geo-
desics, though the latter is the special case that applies to
texture flow. The first part of the paper (Sections 2 and
3) can be read as an independent contribution to solving
the problem of estimating surface shape from surface con-
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tours. The second part of the paper (Sections 4 and 5)
applies the results of the contour analysis to the problem
of estimating surface shape from images of strongly ori-
ented textures (texture flow) on developable surfaces. I
will argue in the conclusion that because the visual sys-
tem can ‘‘co-opt’’ contour mechanisms to infer shape from
textures with significant, and detectable, oriented compo-
nents, such textures may be more perceptually salient
than other textures.

The paper is organized into five sections, including this
introduction. The second section provides a review of
previous shape-from-contour work. The third section
analyzes the information provided by contours projected
from geodesics on developable surfaces. This section
takes a graded approach to the analysis, beginning with
contours projected from parallel geodesics on developable
surfaces under orthographic projection, followed by non-
parallel geodesics (e.g., the corners of a folded page) under
orthographic projection and finishing with the complete
generalization to spherical perspective. In the fourth
section, I show how the geometric analysis of Section 3
can be applied to the problem of inferring shape from tex-
ture flow. The final section describes evidence that tex-
ture flow is a particularly salient form of texture cue to
surface shape and presents a number of demonstrations
that support the contention that texture flow information
is processed by contourlike mechanisms rather than by
more generic texture gradient mechanisms. I also briefly
discuss the problem of measuring texture flow in natural
images.

2. PREVIOUS WORK ON SHAPE FROM
SURFACE CONTOURS
Surface contours are contours in an image that project
from extended markings on a surface. Surface markings
2001 Optical Society of America
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might, for example, correspond to the boundaries of ma-
terial changes on a surface. Other types of contours exist
in images that provide strong sources of information
about surface shape. These include smooth occluding
contours,1,2 discontinuities in surface orientation,3–7 and
shadow boundaries.8,9 The information underlying each
of these types of contours has its own unique geometrical
structure, which is generally different from the geometry
of surface contours. The current analysis of contour in-
formation does, however, generalize to an important class

Fig. 1. Examples of surface markings that generate (a) image
contours and (b) image texture. Both forms of information are
strong cues to surface shape.

Fig. 2. Three examples of surface contours: (a) stripes on a cir-
cular cylinder that follow geodesics (but not lines of curvature),
(b) pairs of geodesics that run in different directions on a cylin-
drical surface, and (c) the edges of a thin, developable surface
that is folded and twisted in space. The contour pattern in (c) is
not, technically, a surface contour but rather is a special kind of
surface-orientation discontinuity, one formed by the edges of a
thin surface. The pattern in (b) might also be formed from the
edges of a thin surface such as a flag. The analysis presented in
this paper applies to this class of contours as well as to surface
contours. In fact, contours formed by the edges of thin surfaces
are possibly the largest natural class of contours to which the
analysis applies.
of contours that are not projected from surface markings.
These are contours projected from the edges of thin sur-
faces such as paper, sheets of metal, or blades of grass.
Thin-surface edges may, in fact, be the largest class of
contours to which our work applies; hence the reader
should keep these in mind as candidate targets for the
analysis.

Numerous computational models have been proposed
to characterize the information content of surface mark-
ings. All of the models rely on assumptions about the ge-
ometry of the markings from which surface contours
project to help constrain what are otherwise underdeter-
mined problems. Types of surface markings covered by
existing models include figures that are statistically iso-
tropic (are drawn from a statistical ensemble of figures
with, on average, no dominant orientation);10–12 closed
figures that are bilaterally symmetric;13 parallel contours
that follow lines of curvature on cylindrical surfaces;14

geodesics on arbitrary, smooth surfaces and their equiva-
lents on piecewise smooth surfaces;15 and parallel, planar
sections through linear, homogeneous, generalized cylin-
ders (e.g., cones and cylinders).16,17 Most of these catego-
ries of surface markings clearly represent natural kinds
of markings, and thus have good ecological justification.
Moreover, phenomenal demonstrations and in some cases
the results of more rigorous psychophysical studies sug-
gest that the visual system can, when appropriate, use
each of the categories of surface contour constraints listed
here.11,14,15,18,19 The analysis presented in Section 3 ex-
tends the general model of contour information to include
contours projected from geodesics on developable sur-
faces.

Fig. 3. Two examples of homogeneous, oriented textures on de-
velopable surfaces. These are created by isomorphically map-
ping (wrapping) planar textures onto developable surfaces: (a) a
texture mapped onto a one-dimensional ridge in such a way that
the texture ‘‘flows’’ along lines of curvature (a special case of geo-
desics), (b) a continuous texture mapped onto a cone. In this
case, the texture ‘‘flows’’ along geodesics of the cone but not along
the lines of curvature.
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3. SHAPE FROM CONTOUR FOR
CONTOURS PROJECTED FROM GEODESICS
ON DEVELOPABLE SURFACES
Stevens14 suggested that humans are predisposed to in-
terpret smooth, extended surface contours as geodesics on
a smooth surface. He analyzed a special case of geodesic
contours: contours that project from lines of curvature
on cylindrical surfaces. The current author15 analyzed
the information provided by surface contours under the
more general assumption of geodesicity and found that,
when surface shape was left unconstrained, the metric in-
formation provided by such contours was weak, although
some qualitative shape information could be derived from
the contours. Neither author was able to suggest a natu-
ral, synthetic model for surface markings on arbitrarily
curved surfaces that would lead to a geodesic constraint.

Such a model does exist for a limited class of surfaces,
namely, ones that are developable. Developable surfaces
have zero Gaussian curvature everywhere; thus they can
be mapped isometrically to a flat surface: they can be
‘‘unfolded,’’ without stretching or compression, to a flat
surface, unlike, for example, a sphere. Similarly, devel-
opable surfaces can be created by folding and twisting
(without stretching or compressing) a flat surface. A
natural class of markings on such surfaces are those that
are straight on the flat surface before folding or would be
straight should the surface be unfolded. The edges of a
sheet of paper are prototypical cases in point. After be-
ing folded, the straight edges are twisted in three-
dimensional (3D) space, with their curvature in space de-
termined by the curvature of the underlying surface.
One can easily show that surface markings created in this
way are geodesics of the curved surface. Thus the local
curvature of the markings is equal to the curvature of the
underlying surface, in both direction and magnitude. Of
course, processes other than folding can generate geodesic
surface markings on a developable surface: for example,
slicing a cylindrical surface perpendicular to its principal
axis, threading a steel rod, or painting curves in a con-
strained way on developable surfaces.

Knowing that a contour is projected from a geodesic on
a developable surface clearly provides significant con-
straint on the problem of estimating surface shape from
contour. In this section I will show that the spherical im-
age of two parallel geodesic curves on a developable sur-
face is enough to uniquely determine the shape of the un-
derlying surface. The analysis is built on the foundation
of a basic relationship between local contour curvature
and local surface curvature (derived in Ref. 15). We
therefore begin with a brief review of geodesics and of this
relationship.

A. Mathematical Notation
I will use the following mathematical conventions in the
paper. Vector quantities defined in the image will be de-
noted by lowercase letters (e.g., n for the vector normal to
a contour), and vector quantities defined in 3D space will
be denoted by uppercase letters (e.g., V for viewing direc-
tion). Variables specifying surface properties will be de-
noted by the subscript S, as in NS , for the surface normal.
Scalar variables will be lowercase. The following vari-
ables will appear prominently in the analysis:

s arc length along a contour in the image
s8 arc length along a curve on a surface in space
k(s) curvature of a contour expressed as a function of

arc length along the contour
kg(s) geodesic curvature of a contour in a spherical

image expressed as a function of arc length along the
contour (the analog of planar curvature for planar
images)

knS
(s) normal curvature of the surface from which a

contour projects expressed as a function of arc length
along a contour in the image

t(s) tangent to a contour expressed as a function of
arc length along the contour

n(s) normal to a contour expressed as a function of
arc length along the contour

TS(s) tangent to the 3D curve that projects to a con-
tour expressed as a function of arc length along the
contour

NS(s) normal of the surface from which a contour
projects expressed as a function of arc length along
the contour

NS(s3D) normal of the surface from which a contour
projects expressed as a function of arc length along
the 3D curve on the surface that projects to the con-
tour

V viewing direction
V(s) viewing direction to the curve that projects to a

contour in the image expressed as a function of arc
length along the contour (constant for orthographic
projection, variable for spherical projection)

RS(s) unit-normal vector specifying the direction of
surface rulings in space expressed as a function of arc
length along a contour

r(s) unit-normal vector specifying the projected direc-
tion of surface rulings in the image expressed as a
function of arc length along a contour

Vectors defined in the image are assumed to be three di-
mensional; thus, for orthographic projection with a view-
ing direction along the z axis, vectors in the image plane
have a z value of 0.

I will make use of two other mathematical conventions
in the analysis. The notation ^x, y& signifies the inner
product between x and y. The notation x ∧ y signifies
the outer product between x and y.

B. Local Curvature Constraint for Geodesic Contours
In Ref. 15 I derived an expression relating the curvature
of an image contour to the normal curvature of its under-
lying surface, under the assumption that the contour is
projected from a geodesic of the surface under ortho-
graphic projection. I re-present the expression here, as it
is fundamental to the solution of the shape-from-contour
problem. The basic logic of the derivation is straightfor-
ward: the normal to a geodesic curve is equal to the sur-
face normal, and its curvature is equal to the normal cur-
vature of the surface; therefore the equation relating
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contour curvature to 3D curvature in space also expresses
the relationship between contour curvature and surface-
normal curvature. Appendix A gives a derivation of the
constraint for both orthographic and spherical perspec-
tive projections.

Proposition 1. Let g be a contour in the image pro-
jected under orthographic projection from a geodesic
curve, G, on a smooth surface (at least twice differen-
tiable). With the notation defined in Subsection 3.B, the
normal curvature of the surface in the tangent direction
of G is given by
Despite the usefulness of the qualitative constraint im-
osed on surface curvature, the shapes of contours pro-
ected from geodesics of generic surfaces clearly provide
imited metric information about surface shape. Equa-
ion (1) constrains surface shape only along the contour,
nd weakly at that. One cannot, for example, use Eq. (1)
o solve for the surface normals along the contour [the
unction NS(s)] without knowing something more about
he surface. In Subsection 3.C I will show that using a
air of parallel geodesic contours projected from a devel-
pable surface, one can transform Eq. (1) into a differen-
knS
~s ! 5

u@n~s ! ∧ NS~s !# ∧ V~s !u^n~s ! ∧ V~s !, n~s ! ∧ NS~s !&

^NS~s ! ∧ V~s !, n~s ! ∧ V~s !&un~s ! ∧ NS~s !u2 k~s !; (1)
where V is the viewing direction, usually taken to be
(0, 0, 1)T. A similar expression applies to contours gen-
erated from spherical projection.

Corollary. Let g be a contour in the spherical image
projected under spherical projection from a geodesic
curve, G, on a smooth surface (at least twice differen-
tiable). The normal curvature of the surface in the tan-
gent direction of G is given by
knS
~s ! 5

1

r~s !

u@n~s ! ∧ NS~s !# ∧ V~s !u^n~s ! ∧ V~s !, n~s ! ∧ NS~s !&

^NS~s ! ∧ V~s !, n~s ! ∧ V~s !&un~s ! ∧ NS~s !u2 kg~s !, (2)
where kg(s) is the geodesic curvature of the contour on
the view sphere (the spherical analog of planar curva-
ture), V(s) is the viewing direction from a point along the
image contour through the center of projection, and r(s)
is the distance from the center of projection to the corre-
sponding point on the curve on the surface.

Equations (1) and (2) differ in two substantive ways.
First, the viewing direction varies with position along a
contour for spherical projection. Second, because of the
scaling effect of perspective, the surface normal curvature
at a point in the image is inversely related to the distance
to the curve at that point.

Note on spherical versus planar perspective. We use
spherical perspective in our analysis for two reasons.
First, it is biologically appropriate. Second, the geo-
metrical relationships for spherical perspective are con-
siderably simpler than for planar perspective, as reflected
in the near equivalence between Eqs. (1) and (2). This
suggests that in applying the model to planar perspective
images, one should first transform the planar perspective
image into its spherical equivalent. This is easily done
with the relation xspher 5 xplan /uxplanu.

Equations (1) and (2) imply a useful qualitative con-
straint relating the curvature of a geodesic contour in an
image to the curvature of the underlying surface.

Definition: sign of curvature constraint. The surface
underlying a contour projected from a geodesic curves in
the same direction as the contour. By implication, pla-
nar points on developable-surfaces project to inflection
points in geodesic contours.
tial equation for NS(s). Solution of the differential equa-
tion provides an estimate of surface shape along the
contours. For developable surfaces, this is enough to
completely determine the shape of the surface between
the contours.

C. Parallel Geodesics of Developable Surfaces:
Orthographic Projection
Developable surfaces have two defining characteristics.
First, they are ruled surfaces; that is, they are composed
of connected sets of straight line segments, the rulings of
the surface. Second, they have zero Gaussian curvature;
that is, at every point on the surface, the first principal
curvature of the surface, in the direction of a surface rul-
ing, is zero. At any given point on a developable surface,
therefore, the local shape is specified by the surface nor-
mal, the direction of the ruling at the point, and the sec-
ond principal curvature. Furthermore, surface orienta-
tion (specified by the surface normal) remains constant
along rulings of the surface; thus, knowing the surface
normals along any curve on the surface fully specifies the
shape of the surface along the rulings that intersect the
curve. One can easily show that the surface normal func-
tion along a curve on a developable surface uniquely de-
termines the directions of the rulings intersecting the
curve;20 thus the surface-normal function completely
specifies the global shape of the surface, and the problem
of estimating surface shape from a contour projected from
that surface reduces to the problem of estimating the
surface-normal function along the contour. (The surface
normals of a developable surface along a curve on the sur-
face specify the shape of the surface along rulings ema-
nating from the curve. The rulings, however, may end in
singularities of the surface, as on a crumpled piece of pa-
per. Other rulings coming into a singular point (or line)
may not intersect the geodesic in question; surface shape
along such rulings would remain indeterminate.)

Recalling that the normal of a geodesic curve is equal to
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the normal of the underlying surface, one can surmise
from the above that any smooth curve in 3-space has as-
sociated with it a unique developable surface for which it
is a geodesic (the surface whose normal function along the
curve is equal to the normal function of the curve itself).
A single contour, therefore, does not provide adequate
constraint on the interpretation problem, even under the
strong constraint that it is projected from a geodesic of a
developable surface. Any 3D curve that could have pro-
jected to the contour admits its own unique interpretation
as a geodesic of a developable surface. This ambiguity is
greatly reduced by the projected image of a second geode-
sic on the surface. When the second geodesic is parallel
to the first (in a generalized sense to be defined below),
the lines of parallelism between the curves determine the
directions of the projected surface rulings. These, in
turn, greatly limit the family of admissable surface inter-
pretations that match the geodesic constraint.

With the exception of cylindrical surfaces, developable
surfaces do not admit curves that are strictly parallel in
3-space, that is, that are rigid translations of one another.
Nevertheless, one can define a consistent notion of paral-
lelism of curves on developable surfaces. In essence, par-
allel curves on a developable surface are ones that map to
parallel curves in the plane when the surface is unfolded.
This is stated more formally below (see also Fig. 4).

Definition. Two curves, G1 and G2 , on a developable
surface are parallel if the tangent field of G1 maps to the
tangent field of G2 under parallel transport. In particu-
lar, if p1 and p2 are points on G1 and G2 connected by a
surface ruling, the tangents of G1 and G2 at p1 and p2 are
parallel @TG1

( p1) 5 TG2
( p2)#.

Under orthographic projection, the tangent of a contour
is a simple function of the tangent of the curve from which
the contour projects, independent of position in the image.
Since the tangents of two parallel curves on a developable
surface are equal along rulings of the surface, they project
to contours whose tangents are equal along the projected
rulings of the surface. Thus contours projected from a
pair of parallel curves on a developable surface have a
generalized form of linear parallelism under orthographic
projection: There exists a unique correspondence be-
tween points on the two contours such that the tangents
of the contours at corresponding points are parallel. Fur-
thermore, the lines of parallelism between the two con-
tours are the projections of the rulings of the developable
surface. Assuming that the surface has no singularities
(points where the rulings intersect), the lines of parallel-

Fig. 4. Lines of parallelism between contours are the projec-
tions of surface rulings.
ism between the two contours cannot intersect (see Fig.
4). Knowing that two contours project from parallel
curves on a developable surface immediately provides a
means for inferring the projected rulings of the surface.
The projected rulings are themselves a strong source of
qualitative information about the shape of the surface.
They reflect the ‘‘twist’’ of the surface. When the pro-
jected rulings are parallel, the underlying surface is nec-
essarily cylindrical.

Knowledge of the projected rulings along a contour al-
lows us to transform the equation for surface curvature,
Eq. (1), into a first-order differential equation for NS(s),
the normal of the surface along the contour; that is, it al-
lows us to derive an equation of the form

]NS~s !

]s
5 f(NS~s !; r~s !, n~s !, k~s !, V), (3)

where NS(s) is the normal of the surface along the con-
tour, r(s) is a unit vector specifying the directions of the
projected surface rulings in the image, n(s) is the normal
to the contour, and k(s) is the curvature of the contour,
all expressed as a function of arc length along the contour.
V is a constant unit vector specifying the viewing direc-
tion. r(s), n(s), k(s), and V are given quantities [with
r(s) inferred from the lines of parallelism between two
contours]; thus they provide the data that parameterizes
the differential equation. Integration of Eq. (3) deter-
mines the surface-normal function along the contour and
hence the shape of the developable surface.

At the core of our derivation is a simple expression
from differential geometry that specifies the rate of
change of a surface’s normal along a curve as a function of
the normal curvature of the surface in the tangent direc-
tion of the curve,

U]NS~s8!

]s8
U 5 U knS

~s8!

sin@u~s8!#
U , (4)

where knS
(s8) is the normal curvature of the surface, s8 is

arc length along the 3D curve on the surface, and u is the
angle between the tangent of the curve and the ruling of
the surface. sin@u(s8)# is given by

sin@u~s8!# 5 @1 2 ^RS~s8!, TS~s8!&2#1/2. (5)

where RS(s8) is a unit-normal vector function in the di-
rection of surface rulings along the curve on the surface
and TS(s8) is the tangent of the curve. Thus we have for
the rate of change of the surface normal along a curve

U]NS~s8!

]s8
U 5 U knS

~s8!

@12^RS~s8!, TS~s8!&2#1/2U . (6)

For a developable surface, the direction of surface orien-
tation change given by ]NS(s8)/]s8 is perpendicular to
the ruling. Since it is also perpendicular to NS(s8) (it lies
in the tangent plane of the surface), we can express the
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direction of ]NS(s8)/]s8 as a unit-normal vector given by
the outer product of RS(s8) and NS(s8):

]NS~s8!/]s8

u]NS~s8!/]s8u
5 H @RS~s8! ∧ NS~s8!# : knS

~s8! > 0

2@RS~s8! ∧ NS~s8!# : knS
~s8! , 0;

(7)

thus ]NS(s8)/]s8 is given by

]NS~s8!

]s8
5 knS

~s8!
RS~s8! ∧ NS~s8!

@1 2 ^RS~s8!, TS~s8!&2#1/2 . (8)

In order to convert Eq. (8) into a differential equation of
the form given in Eq. (3), we need to express the 3D vari-
ables knS

, RS , and T in terms of their equivalent image
variables, k, r, and n (for compactness, we will use the
contour normal in place of the tangent along the contour).
We also need to reparameterize the equation in terms of
arc length along the contour rather than arc length along
the 3D curve on the surface. The latter is accomplished
by postmultiplying with a correction factor, ]s8/]s,

]NS~s !

]s
5 knS

~s !
RS~s ! ∧ NS~s !

@1 2 ^RS~s !, TS~s !&2#1/2

]s8

]s
. (9)

]s8/]s is given by 1 over the cosine of the angle between
the tangent to the contour and the tangent to the curve
from which it projects,

]s8

]s
5

1

^t, T&
, (10)

giving for ]NS(s)/]s

]NS~s !

]s
5 knS

~s !
RS~s ! ∧ NS~s !

@1 2 ^RS~s !, TS~s !&2#1/2

1

^t~s !, T~s !&
.

(11)
The unit-normal vector in the direction of the projected
surface ruling, r, can be backprojected onto the surface to
obtain an expression for RS ,

RS~s ! 5 @r~s ! ∧ V# ∧ NS~s !
1

u~r~s ! ∧ V! ∧ NS~s !u
, (12)

and similarly for T,

TS~s ! 5 @t~s ! ∧ V# ∧ NS~s !
1

u~t~s ! ∧ V! ∧ NS~s !u
,

5 n~s ! ∧ NS~s !
1

un~s ! ∧ NS~s !u
. (13)

Substituting Eqs. (12) and (14) for RS(s) and T(s) and
Eq. (1) for knS

(s) in equation (11) gives, finally,

]NS

]s
5 k~s !

$@r~s ! ∧ V# ∧ NS~s !% ∧ NS~s !

u@r~s ! ∧ V# ∧ NS~s !u

3
u@n~s ! ∧ NS~s !# ∧ Vu

^@NS~s ! ∧ V# ∧ V, n~s !&un~s ! ∧ NS~s !u

3
1

H1 2 K@r~s ! ∧ V# ∧ NS~s !

u@r~s ! ∧ V# ∧ N~s !u
,

n~s ! ∧ NS~s !

un~s ! ∧ NS~s !u L
2J 1/2.

(14)
Equation (14) is a first-order, nonlinear differential equa-
tion; thus we need only specify boundary conditions to
solve for NS(s) and derive an estimate of surface shape.
The information provided by a pair of parallel geodesic
contours can therefore be said to determine the underly-
ing surface shape to within two degrees of freedom. A
convenient way to think of the degrees of freedom is that
they specify the global orientation of the surface.
Stevens’s 14 model of contour interpretation is a special
case of the current formulation, in which the geodesics
are assumed to follow lines of curvature on a surface. In
our context, the line-of-curvature assumption can be
thought of as adding one more constraint on the interpre-
tation, reducing the degrees of freedom in the estimation
problem to one (which Stevens resolved by selecting a
minimum-slant solution).

D. Validating the Parallel-Geodesics Assumption
The previous analysis is useful only to the extent that one
can rely on the assumption that a pair of contours in an
image projects from parallel geodesics on a developable
surface. The problem of determining the validity of an
assumption for a particular set of image data is wide-
spread in vision. One solution to the problem is to rely
on ‘‘key features’’ in an image to infer reliably which of
several candidate models should apply to the data in the
image.21 Key features are those that appear in images of
one category of objects (or scenes) but are highly unlikely
to appear in images of others. Skew symmetry in an im-
age, for example, is a key feature for planar, bilateral
symmetry in the world (under orthographic projection).
This is because planar, bilateral symmetries always
project to skew symmetries in the image, whereas asym-
metric figures almost never do, except, possibly, in acci-
dental views of an asymmetric figure.

The logical candidate for a key feature for the ‘‘parallel
geodesics on a developable surface’’ constraint is the gen-
eralized form of linear parallelism that all projections of
such curves display. In order to serve as a key feature,
linear parallelism should not, in general, appear as a re-
sult of projecting other types of curves into the image.
For unrelated pairs of curves on a surface, this is cer-
tainly the case: The probability of any two such curves
projecting to contours with general linear parallelism is
zero. There exist, however, at least two natural catego-
ries of curves that project to special cases of linearly par-
allel contours: Lines of curvature on cylindrical surfaces
project to strictly parallel contours under orthographic
projection,14 and parallel, planar sections made perpen-
dicular to the axes of linear generalized homogeneous cyl-
inders project to contours related by a simple translation
and scaling17 (see Fig. 5 for examples). The former is a
special case of parallel geodesics. The latter, however, is
a distinct category. Thus we have the following logical
implicatures (based on a general position argument):

A. Strict parallelism ⇒ Parallel geodesics on a cy-
lindrical surface (which
may be lines of curvature)

B. Scaled parallelism ⇒ Parallel geodesics on a de-
velopable surface or
Planar sections perpen-
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dicular to the axes of a lin-
ear generalized homoge-
neous cylinder

C. Linear ⇒ Parallel geodesics on a
parallelism noncylindrical developable

surface and not (A or B)

Except for the special case of scaled parallelism, linear
parallelism reliably implicates the parallel-geodesics con-
straint under orthographic projection. In real imaging
situations, however, measurement noise and perspective
effects create some difficulties in reliably detecting con-
tour parallelism. Thus ancillary information in the im-
age may generally be needed to validate the constraint.
Examples include the shapes of self-occluding contours
and of shading isophotes on a surface. When these
shapes are straight, they determine that the underlying
surface is developable (for shading, this applies to Lam-
bertian surfaces or away from specular highlights). They
also determine the directions of local surface rulings.

E. Nonparallel Geodesics on Developable Surfaces
Contours projected from parallel geodesics on developable
surfaces afford particularly straightforward computations
for the derivation of 3D surface shape; however, parallel-
ism is a fairly restrictive limitation on the scope of the
analysis. In this section we deal with the problem of es-
timating surface shape from contours projected from non-
parallel geodesics on developable surfaces. These are
curves that map to straight but nonparallel lines when a
surface is unfolded. Figure 2(b), of a triangular flag flap-
ping in the wind, shows a prototypical example of such a
set of contours.

Nonparallel geodesic contours contain no simple fea-
ture such as lines of parallelism to determine the pro-
jected surface rulings. This means that one cannot de-
compose the shape-interpretation process into two stages:
first estimating the projected surface rulings, then using
those to help solve the surface-normal-constraint equa-
tion to estimate surface shape. Rather, one must esti-
mate the projected rulings simultaneously with the
surface-normal function along one of the contours. The
greater computational complexity of the problem is offset
by what we will see to be the increased information pro-
vided by having images of two nonparallel geodesics on a
surface.

A specification of the projected ruling vector r1(s) along
one contour defines a continuous mapping between points
on that contour and points on the second contour. We
can express this as a function that maps arc length along
the first contour to arc length along the second contour,

r : s1 → s2 ; s2 5 f(s1 , r~s1!), (15)

where f(s1 , r(s1)) is the function mapping arc length
along one contour to arc length along the other contour
along surface rulings. At each point along the first con-
tour, then, we have two constraints, one induced by the
curvature and orientation of the first contour and the
other induced by the curvature and orientation of the sec-
ond contour,

Fig. 5. Examples of the three different types of parallel contours
discussed in the text: (a) strictly parallel contours, (b) scaled
parallel contours (the top and bottom elliptical arcs), and (c) gen-
eral linear parallel contours.
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where s1 is arc length along one contour and s2 is arc length along the other, s2 5 f(s1 , r(s1)). Given the implicit map-
ping between s1 and s2 determined by the surface rulings, we have, by definition, r(s1) 5 r( f(s1 , r(s1))) and NS(s1)
5 NS( f(s1 , r(s1))), and we can reparameterize the second constraint [Eq. (17)] as a function of arc length along the first
contour, s1 , giving
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where ]s2 /]s1 is the derivative of the function mapping
s1 to s2 . Together with Eq. (16), this gives an overdeter-
mined pair of differential equations in NS(s1), coupled by
the function r(s1).

The projected surface ruling function, r(s1), is a priori
unknown and must be solved simultaneously with the
surface normal function NS(s1). The pair of differential
equations, therefore, specifies four constraints in three
unknowns: two for the surface normal function itself and
one for the function r(s1) (a unit-normal function in two
dimensions). This leads to the conjecture that a pair of
contours projected from nonparallel geodesics on a devel-
opable surface actually overdetermines the shape of the
surface. Thus images of pairs of nonparallel geodesics on
a developable surface should be more informative than
images of parallel geodesics.

The difficulty in estimating surface shape from nonpar-
allel geodesic contours lies in the complexity of the com-
putations involved in solving for the projected surface rul-
ings in parallel with the surface-normal function. This
requires a nonlinear, nonlocal search process. Such a
process would be greatly aided by good initial approxima-
tions of the surface rulings. Two ways to do this imme-
diately present themselves. The first is based on the ob-
servation that inflections in the surface necessarily give
rise to inflections in the projected contours. Thus, con-
necting inflection points in a pair of contours and interpo-
lating the remaining surface rulings between them
should provide a good initial approximation of the pro-
jected rulings. A second method is to use occluding con-
tours or shading information to constrain the estimate of
projected rulings. Developable surfaces with matte re-
flectance have the property that isophotes of the shading
pattern (curves of equal luminance) follow the rulings of
the surfaces; thus the isophotes of a shading pattern
(away from specularities) can potentially provide reliable
information about the directions of projected surface rul-
ings.

F. Generalization to Spherical Perspective
Orthographic projection is clearly an approximation that
holds only for small fields of view and for surfaces that
are near to frontoparallel. This section generalizes the
analysis to the more natural model of spherical perspec-
tive. The principal problem with perspective projection
is that even when a pair of contours projects from parallel
geodesics, the contours do not exhibit any form of paral-
lelism in the image, and one cannot directly infer the pro-
jections of the surface rulings from the contours. This
problem can be dealt with in the same way as the problem
of nonparallel geodesics, that is, by setting up an overde-
termined pair of differential equations in the surface-
normal function along one of a set of contours and simul-
taneously solving for the projected rulings and the
surface-normal function along the contour.

Under spherical projection, points in the world are pro-
jected through a nodal point at the center of a unit sphere
to points on the sphere (called the view sphere). The
view sphere is the geometric analog of the mammalian
retina. We represent the position of a projected point on
the view sphere as a unit-length vector in the direction of
the ray that connects the surface point to the nodal point
of the projection. In this characterization, the position of
a point on the view sphere is simply the negative of the
viewing direction from the eye (or camera) to the corre-
sponding point in the world.

The curvature of a contour formed by spherical projec-
tion is given by its geodesic curvature on the view sphere.
For example, a straight line in the world projects to a
great circle on the view sphere, which, being a geodesic of
the view sphere, has zero geodesic curvature. The corol-
lary to proposition 1 states that the equation that relates
contour curvature to surface curvature for spherical pro-
jection is equivalent to the one derived for orthographic
projection, with a depth scaling factor added to compen-
sate for perspective scaling effects. Thus the derivation
of a differential equation for ]N/]s is qualitatively the
same as the derivation for orthographic projection. In
fact, because the term, ]s8/]s scales linearly with dis-
tance, r(s), the distance term drops out of the differential
equation, and we are left with an equation equivalent in
form to that derived for orthographic projection. Thus
we have for ]NS /]s,
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The only difference between Eqs. (19) and (14) are that
the planar image curvature term, k(s), has been replaced
by the geodesic curvature of a contour on the view sphere,
kg(s), and the constant view vector V has been replaced
by a vector function that varies with position along the
contour V(s).

Because parallel contours projected onto the view
sphere do not support direct estimation of the projected
rulings, solving for surface shape along a contour on the
view sphere should follow the same procedure as for con-
tours projected from nonparallel geodesics under ortho-
graphic projection. The only difference is that the func-
tion specifying the directions of projected rulings, r(s),
expresses orientation in the tangent plane of the view
sphere. The function mapping points on two contours
that share the same ruling is given by tracing great
circles in the direction of r(s) away from points along one
of the contours until they intersect the other contour.
The two differential equations derived from a pair of con-
tours in a spherical image are equivalent in form to those
in Eqs. (18), with the planar curvature terms, k1 and k2 ,
replaced by geodesic curvature terms, kg1 and kg2 .

Under orthographic projection, the absolute depth of
the surface is indeterminate. Similarly, for perspective
projection, the depth is indeterminate, and the absolute
scale (size) of the estimated surface covaries with the es-
timated distance of the surface.

G. Simulations
I performed a number of simulations designed to validate
the geodesic-constraint equations presented in Eqs. (14)
and (19) and to explore the ambiguity in the information
provided by images of parallel geodesic contours. Since
orthography provides a reasonably good approximation to
perspective projection for small fields of view and for sur-
faces with low slants away from the frontoparallel, the
ambiguities inherent under orthographic projection re-
flect the uncertainty imposed by noise for a wide range of
perspective images as well. The first set of simulations
presented here, therefore, explores the nature of the am-
biguity in the information provided by orthographic pro-
jections of parallel geodesic contours. The final simula-
tion illustrates the solution of the shape-from-contour
problem for perspective projection.

For the simulations, I used idealized representations of
contours, unperturbed by noise or quantization errors.
The first two simulations took as input synthetic pairs of
parallel curves in the image [e.g., Fig. 6(a)]. The curves
were generated in the image plane and not as projections
from geodesics on prespecified surfaces. The direction of
surface rul1ings (vertical) was specified for the simula-
tions. I solved the geodesic-constraint equation in the
simplest manner possible, using discrete differences to
compute contour curvature and a Euler method to nu-
merically integrate the equation.

Under orthographic projection, the ambiguity in sur-
face interpretation lies in the initial conditions for the so-
lution of the differential equation. Rather than choose
random initial values for the surface normal, we set the
initial conditions by selecting, for an initial point along a
contour, the slant s of the surface ruling at that point (its
orientation out of the frontoparallel plane) and the angle
u between the geodesic curve on the surface and the sur-
face ruling. These two values, along with the tangent di-
rection of the curvature at the initial point, determine the
initial surface orientation.

The stimuli for the first simulation were a pair of ellip-
tical arcs [Fig. 6(a)]. In this simulation, the angle made
by the inferred curves and the surface rulings was fixed at
90°; that is, the curves were assumed to follow lines of
curvature on the surface. Figures 6(b), 6(c), and 6(d)
show the surfaces estimated for three different slants.
The notable property of the solutions is that the surface
curvature decreases with increasing slant. This follows
from the fact that for a fixed surface shape, contour cur-
vature would increase with global surface slant. Percep-
tually, we appear to prefer the most regular solution: the
circular cylinder.

The stimuli for the second simulation were a pair of
sinusoidal segments [Fig. 7(a)]. In this simulation I fixed
the slant of the surface rulings and varied the assumed
orientation between the curve on the surface and the sur-
face rulings. Figures 7(b) and 7(c) show the surfaces es-
timated assuming that the curves on the surface made
angles of 90° and 75° with the surface rulings. The sur-
face interpretations are dramatically different, although
we clearly prefer the line-of-curvature interpretation.
Figure 7(d) illustrates the difference more dramatically.
In this figure I have projected the lines of curvature of
both surfaces into the image from the same viewing posi-
tion used in the simulation.

The two simulations clearly demonstrate the ambiguity
in the interpretation of surface shape from pairs of ortho-
graphically projected, parallel, geodesic curves. They
also demonstrate the two prior constraints that the hu-
man visual system uses to disambiguate the interpreta-
tion: a line-of-curvature constraint on the direction of
curves on surfaces and a regularity (smoothness, symme-
try) constraint on the shapes of surfaces.

As noted in Subsection 3.F, images of nonparallel
geodesics disambiguate the surface interpretation. Fig-
ure 8 illustrates this by showing one of the pair of sine-
wave contours used in simulation 2, paired with another,
nonparallel, contour generated from each of three
different surface interpretations consistent with the
shape of the sine-wave contour (corresponding to u
P $90°, 80°, 70°%). The addition of the nonparallel geo-
desic contours clearly disambiguates the shapes of the
surfaces, as reflected in the differing percepts of surface
shape elicited by the three images.

The final simulation demonstrates the solution method
for perspective projection. Figure 9(a) shows a pair of
contours projected from lines of curvature on a sinusoidal
surface viewed under perspective projection so that the
image subtended 32° by 45° of visual angle. The pair of
constraint equations defined by each contour was solved
assuming knowledge that the rulings were vertical in the
image. A unique solution for the surface shape was
found by searching for the combination of s and u that
minimized the difference between the surface-normal
functions derived for each contour. This correctly gave a
surface with a 0° slant and with curves following lines of
curvature on the surface (u 5 90°). Figure 9(b) shows a
3D plot of the derived surface, which was equivalent, with
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Fig. 6. (a) Parallel set of elliptical arcs, as might be projected from a segment of a circular cylinder slanted away from the front parallel
by 30°. (b), (c), (d) Reconstructions of the surface shape from the contours in (a) for three different assumed surface slants: 15°, 30°,
and 45°, respectively. Line of sight was along the z axis.
small numerical errors, to the original surface used to
generate the contours. The method was further corrobo-
rated with a large number of other surfaces and viewing
angles.

The simulations shown here take as input idealized
representations of contours and do not deal with a num-
ber of preprocessing problems that must be solved for
practical application of the model. Implementation of a
system for solving shape from contour requires that con-
tours be extracted from images, that they be accurately
labeled (i.e., as surface markings versus smooth occluding
contours), and that they be paired together for solution of
the geodesic-constraint equations. Each of these prob-
lems is a difficult one to solve in its own right and is be-
yond the scope of this paper. I would like to note, how-
ever, one implementation issue that arises from the
discrete and noisy nature of any putative contour repre-
sentation. Because of the use of first- and second-
derivative information in the geodesic-constraint equa-
tions, one will necessarily have to regularize the contour
representation (e.g., by fitting splines to the contour data)
to support a stable numerical solution of the geodesic-
constraint equations. This will also allow subsampling of
the contours for the numerical integration. Because of
the qualitative similarity between the shapes of surfaces
inferred from geodesic contours and the shapes of the con-
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Fig. 7. (a) Parallel set of sinusoidal arcs. (b), (c) Reconstruc-
tions of the surface shape from the contours in (a) for two differ-
ent assumed orientations of the surface markings on the surface
relative to the surface rulings; (b) shows the surface recon-
structed for an assumed marking orientation of 90° (a line of
maximal curvature on the surface); (c) shows the surface recon-
structed for an assumed marking orientation of 70°. The global
surface orientation was assumed to be 30°. Line of sight was
along the z axis. The solid curved lines in (b) and (c) indicate
the backprojections of the surface markings shown in (a).
tours themselves, the errors in shape interpretation in-
duced by contour measurement noise will be qualitatively
similar to the errors in contour shape estimation.

H. Summary of Main Results
I have characterized the information provided by images
of geodesic curves on developable surfaces. The case of
parallel curves under orthorgraphic projection is the sim-
plest. In this case, the projected surface rulings are
given by the lines of parallelism between two contours.
The direction of the projected surface rulings along one of
the contours and the shape characteristics of the contour
together parameterize a nonlinear first-order differential
equation for the surface-normal function (the vector func-
tion specifying the surface normals along a contour).
Since surface orientation is constant along rulings of a de-
velopable surface, this function effectively specifies the
shape of the underlying surface. The geodesic-constraint
equation leaves only two degrees of freedom undeter-
mined, corresponding to the initial conditions for solution
of the equation. Applying Stevens’s assumption that sur-

Fig. 8. The pair of contours in (a) ambiguously determine the
shape of the underlying surface (under orthographic projection).
Humans appear to resolve this ambiguity in part by assuming
that the surface markings follow lines of curvature on a surface.
(b), (c) Pairs of nonparallel geodesic contours uniquely determine
the underlying surface shape. In these figures the upper con-
tour has the same shape as the curves in (a). The second geo-
desic contour, however, disambiguates the shape, and we see the
figures as all having different shapes, corresponding to cases in
which the sinusoidal contour does not follow a line of surface cur-
vature.
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Fig. 9. (a) Perspective projections of a pair of parallel geodesics on a sinuoidal surface viewed from above. (b) The surface was recon-
structed by assuming that the ruling directions were fixed in the image at vertical (in this case, specified by the boundaries). The global
orientation of the surface (0° out of the frontoparallel plane) and of the surface markings (90° form the rulings, i.e., lines of curvature)
were correctly estimated from the image, as described in the text. Perspective projection supports the unambiguous estimation of sur-
face shape.
face markings follow lines of curvature of the surface re-
moves one degree of freedom but can be applied only to
cylindrical surfaces.

The analysis can be generalized to arbitrary (i.e., not
necessarily parallel) geodesic curves viewed under spheri-
cal perspective. Under perspective projection, however,
the geometry of the contours does not directly determine
the projected surface rulings. For a fixed set of projected
surface rulings, the contours specify two independent
first-order differential equations for the surface-normal
function along one of the contours. One must solve these
equations simultaneously with the estimation of the sur-
face rulings to compute the surface normal function. The
fact that the equations locally define four constraints on
three unknowns (the surface normal and the projected
ruling direction) leads to the conjecture that they overde-
termine the surface shape, in which case perspective pro-
jections of geodesic surface markings provide more infor-
mation than do orthographic projections of parallel
markings. It should be noted that orthographic projec-
tion is a reasonable approximation to perspective for
small fields of view, suggesting that perspective effects
will often not contribute significantly to the informative-
ness of a pair of surface contours. It remains true, how-
ever, that contours that project from nonparallel mark-
ings are more informative than contours that project from
parallel surface markings. This increase in informative-
ness comes at the cost of added computational complexity
required to solve the constraint equations.

4. CONTOUR INTO TEXTURE
Figure 3 shows a texture pattern that elicits a strong per-
ception of surface curvature. The texture shown in the
figure is best described as a ‘‘texture flow,’’ as it appears
to be well characterized by the two-dimensional (2D) vec-
tor field of local texture orientations. A natural approach
to estimating surface shape from texture flow would be to
treat it in the same way as shape from contour; that is,
the information contained in texture flow, because it is
carried by the orientation field, is analagous to the infor-
mation contained in extended surface contours. In this
section I show that homogeneous, oriented textures on de-
velopable surfaces have the same geometric structure as
the surface contours analyzed earlier in this paper: The
average texture flow lines follow parallel geodesics on the
surfaces. This leads naturally to the hypothesis that the
visual system may estimate surface shape from texture
flow by using a shape-from-contour mechanism: apply-
ing the differential equations for solving surface shape
from contour derived in Section 3 to flow lines measured
in oriented texture patterns.

The analysis of texture flow is organized into three sub-
sections. Subsection 4.A develops the proposition that
the flow lines of homogeneous, oriented textures follow
geodesics of surfaces. Subsection 4.B discusses the par-
ticulars of solving shape from texture flow when applied
to perfectly oriented textures (textures composed of
strictly parallel line segments), to which the previous geo-
metric analysis of contour information generalizes ex-
actly. Finally, Subsection 4.C considers the problem of
solving shape from texture flow for weakly oriented tex-
tures.

A. Texture Orientation, Homogeneity, and the Geodesic
Constraint
The principal assumption on which all shape-from-
texture models are based is that of homogeneity. The
definition of statistical homogeneity of textures in the
plane is straightforward. One would say that a texture
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is nth-order homogeneous if its nth-order statistical cor-
relations are translation invariant. This maps onto tra-
ditional notions of stationarity for stochastic processes;
for example, a wide-sense-stationary process is one whose
mean, variance and pairwise (second-order) correlations
are translation invariant, while a strictly stationary pro-
cess is one of which all the statistical moments are trans-
lation invariant.

Two of the properties assumed to be invariant with
translation over a surface are the scale and ‘‘shape’’ of lo-
cal texture. I will focus the current discussion on the lat-
ter class of assumptions. For textures in a plane, one can
easily define homogeneity for all aspects of texture shape,
including local compression and orientation of textures.
Unfortunately, the extent to which we can generalize the
concept of shape homogeneity to curved surfaces is lim-
ited. In order to include the concept of local texture ori-
entation in the definition of shape, one requires a global
concept of parallelism on a surface. This is possible only
for developable surfaces; hence the ability to use gradi-
ents in local texture shape as a cue to surface shape in a
consistent way is limited to textures projected from devel-
opable surfaces.

Developable surfaces are locally isometric to the plane;
thus they can be unfolded, without stretching or compres-
sion, to a planar shape. This suggests a natural defini-
tion of homogeneity for textures on such surfaces: that
the statistical properties of a texture are stationary in the
2D plane to which the surface unfolds. Let us represent
a developable surface as a locally isometric mapping from
the plane to 3D Euclidean space, S 5 X(u, v) : E2

→ E3, where (u, v) are rectilinear coordinates in the
plane. X can be thought of as characterizing the folding
and twisting process that transforms the (u, v) plane into
a developable surface in 3-space. We represent textures
on a developable surface as samples of a 2D random field
a, where a(u, v) is the texture ‘‘value’’ at a point (u, v) on
a surface. a could characterize, for example, surface al-
bedo, although we will assume for simplicity that it is sca-
lar valued. The texture field on a developable surface is
homogeneous if the texture field a is statistically station-
ary in the (u, v) plane.

We are concerned here with the information provided
by the pattern of local texture orientations in an image
(the texture flow); thus we require a definition of local
surface-texture orientation. For present purposes, I as-
sume a translation-invariant operator, f, which, when
applied to the texture field a gives a measure of local tex-
ture orientation in the (u, v) plane, u(u, v) 5 fu,v(a).
An example of such an operator is the orientation of the
quadratic form derived from the second-order spatial mo-
ments of a (the orientations of locally fitted ellipses).
Since f is translation invariant and a is stationary, the
resulting random orientation field u is itself stationary.

The orientation field u can be transformed into a ran-
dom normal vector field w in the (u, v) plane, where

w~u, v ! 5 @cos u~u, v !, sin u~u, v !#T. (20)

Since the (u, v) plane is isometrically mapped by X onto a
developable surface S, the vector field w in the (u, v)
place is mapped to a 3D vector field T on the surface by
T(u, v) 5 ]X(u, v)@w(u, v)#, where ]X is the differential
of X, given by the matrix

]X 5 F ]X

]u

]X

]v G 5 F ]x/]u ]x/]v

]y/]u ]y/]v

]z/]u ]z/]v
G . (21)

I will refer to T as the texture flow field on a surface.
By definition, homogeneous textures in the plane are

samples from a stationary stochastic process; therefore
the mean vector field, E@w#, computed over the entire en-
semble of textures, is a constant. (In practice, homoge-
neity should also imply ergodicity; that is, that the spatial
variation in local estimates of mean texture orientation
will decrease with increases in the size of the window over
which the estimates are computed.) For a given surface
and a given texture ensemble, the mean flow field for tex-
tures mapped onto the surface is given by

E@T~u, v !# 5 ]X~u, v ![E@w#]. (22)

If we assume that the surface is smooth, then the mean
texture flow field is a differentiable, unit-normal vector
flow field. We can think of the mean flow field as a tan-
gent vector field that can be integrated to derive a family
of flow lines on the surface. Because the flow lines in the
(u, v) plane are parallel straight lines and are mapped
under an isometry to the surface, the flow lines on the
surface are parallel geodesics; that is, the flow lines are
parallel along rulings of the surface.22 The situation is
depicted in Fig. 10.

The geometric properties of homogeneous textures on
developable surfaces suggest that we can apply the same
method used to infer surface shape from parallel geodesic
contours to infer surface shape from texture flow. Apply-
ing the method requires two stages: (1) estimating the
projections of the mean texture flow lines, which would be
equivalent to a set of parallel geodesic contours, and (2)
integrating the geodesic-constraint equations along the
flow lines to infer the underlying surface shape. In the
following section I will consider a class of textures for
which the first problem is trivial: perfectly oriented tex-
tures, composed of parallel sets of line segments. This
simple case will illustrate the unique advantages offered
by flow fields for the interpretation of surface shape. For
most textures, however, the first problem is nontrivial,
and Subsection 4.D will treat the geometric distortions in
image texture flow fields composed of elements with some
‘‘width’’ (e.g., ellipses as opposed to idealized straight line
or edge segments).

B. Estimating Shape from Texture Flow: Perfectly
Oriented Textures
The projection equation mapping a straight line segment
into the image is equivalent to the one mapping a curve’s
tangent to the tangent of its projected contour. Thus, as-
suming either orthographic or spherical perspective pro-
jection, the texture flow field in the image of a perfectly
oriented texture is given by the 2D vector field,

t~u, v! 5
@T~u, v! ∧ V~u, v!# ∧ V~u, v!

uT~u, v! ∧ V~u, v!u
, (23)
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Fig. 10. (a) Oriented flow field composed of parallel line segments mapped under an isometry to parallel geodesics (in this case, lines of
curvature) on a cylinder. (b) More natural oriented texture, mapped under an isometry to a cone. The apparent flow lines follow parallel
geodesics of the cone.
where u and v are an arbitrary pair of parameters speci-
fying position in the image, T is the texture flow field on
the surface, and V is the viewing direction at the point
(u, v) in the image. For orthography, V is constant.
Treating t as a tangent field, one can integrate it to derive
a family of imaginary contours (flow lines) whose geom-
etry is equivalent to that of contours projected from par-
allel geodesics on a surface. This allows one to apply the
differential equations [(14) for orthography or (16) and
(19) for spherical perspective] to solving surface shape
from texture flow.

A number of features of texture flow make estimating
surface shape from texture flow notably simpler than es-
timating surface shape from geodesic contours. First,
texture flow fields support direct estimation of the pro-
jected surface rulings even under spherical perspective,
unlike pairs of surface contours. Since surface rulings
project to great circles on the view sphere and the surface-
texture flow field along surface rulings is parallel, the
problem of finding the projected surface rulings reduces to
that of finding the set of great circles along which the im-
age texture flow t can be shown to be projected from a
parallel field. Since parallel lines in the world project to
great circles on the view sphere that intersect at a com-
mon pole of the sphere (see Fig. 11), projected rulings are
characterized by the property that the great circles tan-
gent to the texture flow along rulings intersect at a com-
mon pole. This property can be used to infer the pro-
jected rulings in a spherical image in much the same way
as lines of parallelism are used in orthographic images.
Second, since the texture flow field is a dense tangent
field, one need not integrate the geodesic-constraint equa-
tion along a flow line but can do so along any curve in the
image. This implies that occlusion is not the problem for
texture flow that it is for contours. [Equation (19) is ex-
pressed in terms of arclength along a geodesic contour;
thus integrating along a nonflow line, a(t), requires mul-
tiplying the left-hand side of the equation by a correction
factor, ]s/]t.]

C. Weakly Oriented Textures: Effects of Local Texture
Shape
Perfectly oriented texture flows are clearly a strong
source of information about the shape of a surface; how-
ever, few natural textures are perfectly oriented. The
principal way in which most natural textures deviate
from the idealized line-element model is that the local
shape of textures has width as well as orientation. The
prototypical example is a texture composed of ellipses,

Fig. 11. Under spherical perspective, parallel lines in the world
project to great circles on the view sphere that intersect at a com-
mon pole. Since the tangents of parallel texture flow lines along
a surface ruling are parallel, their projections on the view sphere
are tangent to great circles that intersect at a common pole.
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which, while they might all be oriented in the same direc-
tion, have some nonzero aspect ratio. We will refer to
such textures as weakly oriented textures. In general,
the local orientation of a projected texture, as measured
in the image, will not be equal to the projected orientation
of the surface texture as defined by Eq. (23); hence the
measured texture flow lines in the image will not equal
the idealized projection of texture flow lines on the sur-
face. In this section I analyze the errors in measured
texture flow (measured as deviations from the idealized
flow of perfectly oriented textures) for weakly oriented
textures as a function of how strongly oriented the tex-
tures are (how closely the textures approach the thin-line-
element model).

In order to treat the problem quantitatively, I will rely
on a specific class of models for quantifying local texture
orientation and shape: those based on local, second-
order moments of a texture. Such models represent a
texture field as a field of moment tensors, measured lo-
cally in a texture, each of which can be thought of as the
quadratic form of an ellipse. An example of such a for-
mulation, based on luminance gradient measures in an
image is given below,

M~x, y ! 5 Fmxx~x, y ! mxy~x, y !

mxy~x, y ! myy~x, y !
G

5 F EEV~x,y!

]2L~x, y !

]x2 EE
V~x,y!

]2L~x, y !

]x]y

EE
V~x,y!

]2L~x, y !

]x]y
EE

V~x,y!

]2L~x, y !

]y2

G ,

(24)

where the integrals are computed over a small region of
the image, V (x, y) , around a point. The formulation could
easily be applied to characterizing local texture shape on
a surface by replacing the luminance variable with an al-
bedo variable. Other methods for computing such mo-
ment tensors exist, for example, measuring the statistical
distribution of edge element orientations in a local region
of texture24,25 or measuring the second-order moments of
the local spectrum of a texture.26 All of the methods
share the same geometric interpretation: Textures are
represented as 2D fields of ellipses, defined by treating
the local moment tensors as quadratic forms. A texture
flow, then, is given by the vector field defined by local el-
lipse orientations. The strength of orientation of a sur-
face texture is given by the aspect ratio of the average el-
lipse fitted to the local texture on a surface.

In the current analysis I will assume that one can de-
fine the local moments of the texture, a, on a surface in
the same way as in the image. I will further assume that
the measurement scale is small enough relative to the
curvature of a surface and the viewing distance that we
can approximate the local projection of a texture onto the
view sphere as being orthographic along the line of sight.
In this case the local image texture moment, MI , can be
written as a function of the local surface texture moment,
MS , as

MI 5 P21T
MSP21, (25)
where MS is computed in the (u, v) plane (the ‘‘unfolded’’
surface) and P is the differential of the map from the
(u, v) plane into the image at the image position, (u, v)
[the mapping from the (u, v) plane to the image is a com-
position of the mapping, X, from the (u, v) plane to the
surface and the projective mapping into the image]. The
image texture flow field is given by the vector field t, de-
fined by the normalized eigenvectors of MI (with smallest
eigenvalue), that is, the field of vectors oriented along the
long axes of the ellipses defined by MI .

Figure 12 illustrates the problem presented by weakly
oriented textures. It shows an oriented texture that has
been mapped onto a Gaussian ridge and projected into the
image. The aspect ratio of the local texture in this ex-
ample is 0.5. Superimposed on the figure are the pro-
jected flow lines [the projections of the flow lines on the
surface, computed with Eq. (23)] and the image flow lines
(the flow lines of the vector field defined by the local tex-
ture moments of the image texture). Because the geode-
sic constraint equations characterize the relationship be-
tween the curvature of the projected flow lines and the
curvature of the underlying surface, applying them to the
image flow will lead to some error.

The difference between the image texture flow field and
the projected flow field arises from the fact that the orien-
tation vector of a projected ellipse is not equal to the pro-
jection of the orientation of the original ellipse, as illus-
trated in Fig. 13. Figure 13(a) shows three hypothetical
elliptical texture elements on a surface along with the
vectors specifying their orientations. Figure 13(b) shows
the orthographic projections of the ellipses after the sur-
face has been rotated away from the frontoparallel by 60°
around the horizontal. Superimposed on the ellipses are
pairs of vectors showing the projected orientation vectors
and the orientation of the projected ellipses. Only the

Fig. 12. Image of a texture composed of parallel ellipses with
aspect ratio 5 0.5, mapped onto a Gaussian ridge. The solid
line represents the measured flow line in the center of the image,
computed by integrating the flow field given by the set of ellipse
orientations in the image. The dotted line represents the pro-
jected flow line in the center of the image, that is, the projection
of a flow line on the surface. The projected flow line is not di-
rectly available to an observer. The difference between the mea-
sured flow line and the projected flow line reflects the error that
would be induced in one’s shape estimate should one apply the
geodesic-constraint equation to the measured flow lines.
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latter is available in the image. The difference between
the two grows as the aspect ratio of the texture element
approaches 1 (a circle).

In this section I set out to show, using selected calcula-
tions, that the problem posed to the model by weakly ori-
ented textures is not as great as it might first appear; in
particular, the difference between projected flow lines and
image flow lines for weakly oriented textures is small for
a large family of textures and for a large subset of viewing
angles on a surface. I performed three sets of computer
calculations. The first calculated the difference between
the orientation of a projected ellipse and the projected ori-
entation of the same ellipse as a function of the orienta-
tion of the surface on which the ellipse lies, the spin of the
ellipse within that plane, and the aspect ratio of the el-
lipse. This measure quantifies the error in local orienta-
tion estimates induced by treating the image texture flow
field as equivalent to the projected texture flow field.
The second set of calculations computed a similar error in
texture flow curvature for textures composed of dense
fields of parallel ellipses. The final set of calculations
was designed to evaluate the global effects of these local
errors for image texture flows projected from cylinders
and ridges.

The calculations characterize the difference between
image texture flow (the vector field defined by local image
texture orientation) and projected surface texture flow
(the flow to which the contour equations apply). Because
we were interested in the geometric distortion induced by
the local shape of surface textures, we assumed for the
calculations textures composed of dense, essentially con-

Fig. 13. Illustration of the effects of projection on ellipse orien-
tation. Ellipses rotated out of the frontoparallel plane projected
to ellipses in the image. The solid arrows on the left figures rep-
resent the orientation of the ellipses on the surface. The solid
arrows on the right represent the projections of the orientation
vectors, and the dashed arrows represent the orientations of the
projected ellipses. The difference between the two illustrates
the fundamental problem in directly applying the shape-from-
contour theory to weakly oriented texture flows: The image tex-
ture flow as given by the texture-orientation field in the image
deviates from the projection of the texture flow on the surface.
tinuous, fields of parallel ellipses. The errors described
in the following sections, therefore, represent the error in-
duced by treating image texture flow (assuming noiseless
measures) as an estimate of the projected surface texture
flow field. They do not include errors induced by prob-
lems with image measurements of texture flow, nor do
they reflect the variability in image texture flow fields
that would be induced by stochastic variation in local tex-
ture shape and orientation.

1. Orientation Error
The first calculations were designed to study the effects of
projection on the local orientation of measured texture
flow. To study these effects, I measured the difference
between the projected orientation vector of an ellipse and
the orientation of the projected ellipse as a function of the
3D pose of the ellipse in space (the slant of the underlying
surface around the horizontal and the spin of the ellipse
in the tangent plane of the surface: its orientation away
from the horizontal axis). Some of these differences were
illustrated in Fig. 13. Figure 14 shows the results for el-
lipses with aspect ratios of 0.125, 0.25 and 0.5. As ex-
pected, the error grows as the aspect ratio of the ellipse
grows. Two other notable features of the results are that
the error increases as the spin of the ellipse increases,
that is, as the alignment of the ellipse approaches the tilt
vector of the surface; and, similarly, it increases with in-
creasing surface slant. These properties characterize the
conditions in which the measured orientation of a weakly
oriented texture flow will deviate from the idealized pro-
jected flow orientation.

2. Curvature Error
The second series of calculations was designed to study
the effects of local texture shape on the curvature of the
image texture flow field. The local curvature of a devel-
opable surface is characterized by the direction of maxi-
mal curvature in the tangent plane of the surface (or-
thogonal to the direction of the local surface ruling) and
the value of the maximal curvature. The local curvature
of the image texture flow is a function of five parameters:
the slant of the surface, the direction and the quantity of
maximal curvature of the surface, the direction of the flow
on the surface relative to the direction of maximal curva-
ture, and the aspect ratio of the texture on the surface.
Since we are concerned with the proportional error in the
curvature of measured texture flow (relative to the curva-
ture of the projected flow lines), I explore only a four-
dimensional parameter space in the calculations: the
slant of the surface (arbitrarily fixing the tilt to be verti-
cal), the direction of surface curvature relative to the tilt
direction, the direction of texture flow relative to the di-
rection of maximal curvature, and the aspect ratio of the
flow.

Figures 15–17 show contour plots of proportional cur-
vature error as a function of surface pose (surface slant
and direction of maximal surface curvature). Surface
slant is expressed in degrees away from the frontoparal-
lel, the direction of surface curvature is given in degrees
away from the horizontal (the surface is assumed to be
slanted away in the vertical direction, i.e., about a hori-
zontal axis), and the orientation of the texture flow (its
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Fig. 14. Contour plot of the angular difference between the ori-
entation vector of a projected ellipse and the projected orienta-
tion vector of an ellipse in the world. The error represents the
orientation error induced by treating local image texture orien-
tation as equivalent to the projection of the local orientation vec-
tor of a texture on a surface. Differences for textures with (a) an
average aspect ratio 5 0.125, (b) aspect ratio 5 0.25, and (c)
aspect ratio 5 0.5.
Fig. 15. Proportional difference between the curvature of the
image texture-flow field and the true projected flow field for tex-
tures with three different orientations relative to the direction of
maximal curvature: (a) 0° (flow is oriented along a line of cur-
vature), (b) 30° (middle figure) and (c) 60°. The aspect ratio of
the texture elements for the texture was fixed at 0.125. Propor-
tional error is given by error 5 ukmeasured2kprojectedu/kprojected ,
where kmeasured is the curvature of the image texture flow and
kprojected is the curvature of the projected surface texture flow
field. Both slant and the direction of maximal surface curvature
are given in degrees.
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spin) is given in degrees away from the direction of maxi-
mal curvature. The orientation of the texture flow rela-
tive to the horizontal is given by the sum of the texture-
flow spin and the direction of maximal surface curvature.

Fig. 16. Same as Fig. 15, but with a texture aspect ratio
5 0.25.
The three figures correspond to different texture aspect
ratios. For texture aspect ratios of 0.125 and 0.25, the
range of surface poses for which the curvature error is be-
low 25% is quite large. This low-error region shrinks as

Fig. 17. Same as Fig. 15, but with a texture aspect ratio
5 0.5.
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the aspect ratio increases. The plots for aspect ratios of
0.5 show large errors for a significant range of surface
poses.

Note that the greatest proportional error is found when
the texture flows in a direction aligned with the surface
tilt, in this case, the vertical direction. Conversely, the
proportional error tends to be low when the texture flows
in the direction perpendicular to the surface tilt (the hori-
zontal).

3. Global Texture Flow Errors
In order to evaluate the global impact of the local errors
in image texture flow for weakly oriented textures, I cal-
culated the image texture flow for dense fields of ellipses
mapped onto cylinders for a number of different object
poses in three dimensions. Image texture flow lines were
computed by integrating the flow field estimated from the
orientations of projected texture ellipses at each point in

Fig. 18. Images of two texture fields of ellipses mapped onto cyl-
inders oriented at (a) 30° and (b) 60° away from the frontoparal-
lel plane. The texture field on the surface is composed of el-
lipses with an aspect ratio of 0.5, all oriented along the line of
maximal curvature of the cylinder. The solid line shows the ide-
alized image texture flow line through the center of the image
(computed with a much denser array of ellipses than are shown
in the figure), and the dashed line shows an idealized represen-
tation of the average projected texture-flow line. As described in
the text, the image texture flow is computed from an orientation
field derived from the ellipses in the image. The projected flow
is computed by projecting the flow lines on the surface into the
image. Only the former is directly available to an observer.
the image. Projected texture flow lines were computed
by integrating the projection of the surface texture flow
field from the center of the projected image to the self-
occluding boundaries of the cylinder on either side.

Figure 18 shows flow lines computed for textures that
follow lines of curvature on a cylinder. I have chosen to
show only the image texture flow lines for textures whose
aspect ratio is 0.5, as the deviation between projected flow
lines and image flow lines decreases rapidly when the as-
pect ratio sinks below 0.5 (e.g., textures with an aspect ra-
tio of 0.25 show little difference between projected and
image flow lines). Figures 19 and 20 shows flow lines
computed for textures oriented 30° away from the lines of
curvature of the cylinder. For textures with an aspect
ratio of 0.25, small difference appear in the projected and
the measured flow lines. Even for textures with a large
aspect ratio of 0.5 (very weakly oriented), however, the
differences are small. Note further that the errors are
greatest in regions of the image texture with the weakest

Fig. 19. Images of two texture fields of ellipses mapped onto cyl-
inders oriented (a) in the frontoparallel plane and (b) 45° away
from the frontoparallel plane. For both images the texture field
contains ellipses with an aspect ratio 5 0.25, all oriented at an
angle of 30° away from the lines of maximal curvature of the cyl-
inders. The solid line shows an idealized representation of the
image texture flow line through the center of the image, and the
dashed line shows an idealized representation of the average pro-
jected texture flow line.
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orientation, that is, where the projected ellipses have the
largest aspect ratios.

In the introduction to this section, I showed projected
texture flow lines and image texture flow lines for a tex-
ture (aspect ratio 5 0.5) on a Gaussian ridge surface (see
Fig. 12). As with the previous simulations, the difference
in curvature of the two flow lines reflects the error that
would be induced by treating measured flow lines as
equivalent to projected flow lines. The most notable fea-
ture about the figure, however, is that the qualitative
shape of the flow lines remains invariant to the aspect ra-
tio of the underlying texture. This is also true in the
simulations shown here, suggesting that, while care must
be taken in interpreting the absolute curvature of a sur-
face from the flow lines in images of weakly oriented tex-
tures, one can reliably determine the qualitative shape of
a surface from texture flow even for weakly oriented tex-
tures.

Fig. 20. Images of two texture fields of ellipses mapped onto cyl-
inders oriented (a) in the frontoparallel plane and (b) 45° away
from the frontoparallel plane. For both images the texture field
contains ellipses with an aspect ratio 5 0.5, all oriented at an
angle of 30° away from the lines of maximal curvature of the cyl-
inders. The solid line shows an idealized representation of the
image texture flow line through the center of the image, and the
dashed line shows an idealized representation of the average pro-
jected texture flow line.
D. Conclusions
Homogeneous, oriented textures on developable surfaces
flow along parallel geodesics of the surfaces. For tex-
tures that are strongly oriented (approximating parallel
fields of straight line segments), therefore, the shape
equations that apply to the estimation of surface shape
from contour also apply to the flow lines in the images of
such textures. These flow lines can be computed by inte-
grating the measured orientation field in an image tex-
ture. Unlike the case of parallel contours imaged under
perspective projection, texture flow fields support the di-
rect estimation of projected surface rulings, an important
step in simplifying the shape-estimation problem, a step
that renders the problem one of simply integrating a first-
order, nonlinear differential equation. Furthermore, the
inherent noise in texture measurements can be signifi-
cantly reduced by averaging the orientation field along
lines of the projected rulings, resulting in a virtual con-
tour that can be used as input to the integration process.

The major difficulty in applying the theory to real tex-
ture images is that most textures are composed of texture
elements that have extended shapes (e.g., ellipses). The
image texture flow field created by the projection of such
textures is not equal to the projection of the texture flow
field on the surface, as is required for strict validity of the
geodesic-constraint equation. Numerical calculations,
however, show that for a large range of object poses, the
distortions between image texture flow fields and pro-
jected flow fields is small, even for textures whose average
local aspect ratio is as large as 0.5. Furthermore, many
manmade textures contain a small number of well-
differentiated orientations (e.g., brick walls). These tex-
tures can be thought of as mixtures of strongly oriented
textures. Mechanisms that segment a texture into its
oriented components could serve as a first stage to a
shape-from-texture flow process.

5. DISCUSSION
A. Evidence for Texture Flow Curvature As a Primary
Shape Cue
Todd and Reichel27 showed that textures composed of par-
allel, but disjoint, line segments on a curved surface could
generate strong percepts of 3D shape similar to that gen-
erated by parallel lines mapped onto the same surface.
In a more recent set of experiments, the current author
measured the perceptual salience of textures as a func-
tion of their orientation strength.28 Subjects viewed
shaded and textured Gaussian ridges and were asked to
localize the position of the ridge in the image. A pertur-
bation technique was used to estimate the weights given
by subjects to shading and texture in determining the
perceived position of the ridge. Subjects gave approxi-
mately twice as much weight to texture when it was
strongly oriented along the lines of curvature of the sur-
face as when it was isotropic. Moreover, the weight
given to texture increased monotonically with increasing
texture orientation strength; that is, as the average as-
pect ratio of the texture elements decreased from 1 to
0.125.

Li and Zaidi29 also found psychophysical evidence for
the improved reliability of texture as a shape cue when it
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is oriented along lines of curvature of a surface. They ob-
tained measures of subjects’ shape percepts for sinusoidal
surfaces as depicted by textures containing, to varying de-
grees, strongly oriented components along the lines of
curvature of the surface. They found that subjects’ per-
cepts of shape were much more accurate when textures
contained a well-differentiated component that flowed
along the lines of curvature of a surface than when it did
not, including when the texture was perfectly isotropic.
Subjects’ estimates of the amplitude of the sine wave were
greater, and they had fewer shape inversions (interpret-
ing convex as concave, and vice versa), for the textures
with good flow information. As in the current paper, Li
and Zaidi suggested that the human visual system uses a
shape-from-contour-like mechanism to interpret surface
shape from texture flow, although they propose that the
visual system incorporates Stevens’ strong line of curva-
ture constraint on the interpretation.

These studies suggest that textures that contain
strongly oriented components along the lines of curvature
of cylindrical surfaces provide optimal shape cues under
many viewing conditions. By itself, this does not impli-
cate a contour-like mechanism for the interpretation of
shape from texture flow, as outlined in this paper. Any
shape-from-texture model that accurately represents the
texture homogeneity constraint (e.g., Malik and Rosen-
holtz’s model of shape from local texture deformations30)
might perform similarly; that is, the results may simply
reflect the relative informativeness of different classes of
textures, textures that flow along lines of surface curva-
ture possibly being the most informative. It would be dif-
ficult to isolate the exact nature of the shape mechanism
used to interpret shape from texture in the type of psy-
chophysical experiment described above. I would, how-
ever, like to present one piece of indirect evidence in sup-
port of the theory that texture flow taps into a shape-
from-contour-like mechanism in the human visual
system. Figure 21 shows two images of a Gaussian ridge
surface. The texture on one surface flows along lines of
curvature of the surface, whereas on the other surface it
flows along a direction 30° away from the line of curva-
ture. The perceived shape of the second surface is clearly
different from that of the first. It appears as a surface
whose texture is, in fact, flowing along a line of curvature;
that is, our visual systems seem to interpret the shape of
the surface by using a strong bias to interpret the texture
as flowing along lines of curvature of the surface.

The demonstration illustrates two important points
about estimating surface shape from texture flow. First,
one of of the principal ambiguities in the information pro-
vided by texture flow about surface shape is the direction
of the texture flow relative to the lines of curvature on a
surface. Estimation of the direction of the flow directly
affects estimation of surface shape. Under orthographic
projection, the ambiguity is absolute: a wide range of
flow directions would be consistent with any given image
of texture flow. In small fields of view, perspective con-
tributes little to resolving this ambiguity. The second
point illustrated by Fig. 21 is that the human visual sys-
tem resolves the ambiguity by applying a prior bias to in-
terpret flow as following lines of curvature on a surface,
consistent with Li and Zaidi’s proposal.29 Such a bias fits
naturally into a system designed to estimate shape from
contour, but it has no natural implementation in a ge-
neric shape-from-texture model that simply measures lo-
cal texture gradients, or deformations.

The preceding demonstration leads naturally to the
question of whether the human visual system can inter-
pret texture flow by using a generic geodesic constraint,
as implied by homogeneity, or whether it necessarily ap-
plies the stricter line-of-curvature assumption. One an-
swer to the question is that the line-of-curvature con-
straint is consistent with the homogeneity constraint only
for cylindrical surfaces, for which the lines of curvature
are also geodesics. Figure 3(b) shows a homogeneous,
oriented texture on a cone. The flow in this figure does
not follow lines of curvature of the surface. No homoge-
neous texture on a cone could follow lines of curvature,
since lines of curvature on a cone are not geodesic. The
same is true for any surface that is twisted in space. In
such cases, the projected rulings indicated by the texture
flow will not converge at a common point on the view
sphere, thus providing reliable evidence that a surface is
noncylindrcial.

Even if humans were able to distinguish between tex-
ture flows that follow lines of curvature and those which
do not, one would have to question whether they are able
to infer surface shape from texture flow when the flow did
not follow lines of curvature. The demonstration in Fig.
22 suggests that humans can do this. The figure shows
two cylindrical surfaces with texture flow in a direction
30° away from the line of maximal curvature of the sur-
faces. The surfaces appear, correctly, to be elongated to-
ward the observer by different amounts, despite the fact
that the shading on the two figures is the same. The dif-
ference in perceived shape is clearly attributable to the
differences in texture flow, in this case, the smooth oc-
cluding contours of the surface constrain the interpreta-
tion of the surface to be convex, eliminating the line-of-

Fig. 21. Two oriented textures mapped onto a Gaussian ridge.
(a) oriented along lines of maximal curvature on the surface, (b)
oriented 37° away from the lines of maximal curvature. The
shapes of the two surfaces appear markedly different. The tex-
ture in (b) appears to be interpreted as if the texture flowed along
lines of curvature of a surface.
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curvature interpretation as a candidate estimate of sur-
face shape. Thus the human visual system does appear
to be able to estimate surface shape from texture flow
without making recourse to the line-of-curvature con-
straint. It remains to be seen whether the salience of the
cue is as strong in this case as it has been demonstrated
to be when the texture flows along lines of maximal sur-
face curvature.

B. Recovering Flow Lines
Having shown how texture flow can be used to infer sur-
face shape and that human observers are sensitive to the
information in texture flow, I would like to discuss briefly
the problem of measuring texture flow. Several models
have been proposed for doing this in the computational
literature, though with an eye more toward texture clas-

Fig. 22. Texture flow that does not follow lines of curvature on a
cylindrical surface provides perceptually salient information
about the curvature of the surface. (a) A homogeneous texture
oriented 30° away from the line of maximal curvature on a flat-
tened cylinder with aspect ratio 5 0.66. (b) A similar texture
pattern on an elongated cylinder with aspect ratio 5 2.0. The
surface in (b) clearly appears more elongated than the one on (a).
In this case the virtual occluding contours on either side of the
cylinder preclude a line-of-curvature interpretation for the tex-
ture.
sification than to shape estimation.31 Psychophysical
data from experiments directed at the question of contour
completion also suggest the existence of mechanisms that
would naturally support the estimation of average texture
flow fields in an image. Most notable are results suggest-
ing that facilitatory influences extend not only between
aligned detectors32,33 but also between detectors arranged
in parallel with one another. Such facilitatory connec-
tions are exactly what would be required in a network de-
signed to extract an average texture flow field from a
noisy texture flow in an image.

C. Summary
I have derived a set of differential equations for the esti-
mation of surface shape from a broad class of contours:
those that project from geodesics on developable surfaces.
These results apply naturally to the problem of estimat-
ing surface shape from homogeneous, oriented textures,
as the homogeneity constraint implies that an oriented
texture flows along geodesics of a developable surface.
Although errors may be induced by applying the contour
equations directly to the flow patterns estimated from
weakly oriented texture patterns, simulations suggest
that the errors will be small for a broad range of surface
poses in three dimensions. Psychophysical evidence and
a number of phenomenal demonstrations suggest that
texture patterns that are strongly oriented (texture flow)
generate more salient cues to surface shape than do tex-
tures that are isotropic. Moreover, texture flow may be a
particularly effective cue to shape because it can tap into
the same mechanisms in the visual system that are used
to estimate surface shape from contour.

APPENDIX A
In this appendix I derive the equations relating contour
curvature to surface-normal curvature for geodesic con-
tours [Eq. (1) and (1) in the text]. The notation and vari-
able definitions follow the conventions defined in Subsec-
tion 3.B of the paper.

1. Orthographic Projection
Under orthographic projection, the normal to a contour is
related to the tangent direction of the 3D curve from
which it projects by

n~s ! 5
T~s ! ∧ NS~s !

uT~s ! ∧ NS~s !u
. (A1)

The signed curvature of the contour is given by

k~s ! 5 K ]n~s !

]s
, t~s !L , (A2)

where t(s) is the tangent of the contour. Differentiating
Eq. (A1), we obtain
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]n~s !

]s
5

]T~s !/]s ∧ V

uT~s ! ∧ Vu

2
^]T~s !/]s ∧ V, T~s ! ∧ V&T~s ! ∧ V

uT~s ! ∧ Vu3 , (A3)

and substituting into Eq. (A2) gives for the signed curva-
ture,
TS~s ! 5 @t~s ! ∧ V# ∧ NS~s !
1

u@t~s ! ∧ V# ∧ NS~s !u
, (A8)

TS~s ! 5 n~s ! ∧ NS~s !
1

un~s ! ∧ NS~s !u
, (A9)

and substituting the expression derived in the text for
]s8/]s, we have, finally,
k~s ! 5
^]T~s !/]s ∧ V, t~s !&

uT~s ! ∧ Vu

2
^]T~s !]s ∧ V, T~s ! ∧ V&^T~s ! ∧ V, t~s !&

uT~s ! ∧ Vu3 .

(A4)

T(s) ∧ V is a vector in the image that is perpendicular to
the tangent of the contour, so ^T(s) ∧ V, t(s)& 5 0 and
Eq. (A4) simplifies to

k~s ! 5
^]T~s !/]s ∧ V, t~s !&

uT~s ! ∧ Vu
. (A5)

Because the 3D curve is a geodesic of a surface,
]T(s8)/]s8, where s8 is arc length along the 3D curve, is
parallel to the normal vector of the surface and has a
magnitude equal to the surface’s normal curvature. We
therefore have for ]T(s)/]s

]T~s !

]s
5

]T~s8!

]s8

]s8

]s

5 knS
~s !NS~s !

]s8

]s
. (A6)

Substituting into Eq. (A5) gives

k~s ! 5 knS

^NS~s ! ∧ V, t~s !&

uT~s ! ∧ Vu

]s8

]s
. (A7)

Using the backprojection equation
k~s ! 5
^NS~s ! ∧ V~s !, n~s ! ∧ V~s !&un~s ! ∧ NS~s !u2

u@n~s ! ∧ NS~s !# ∧ V~s !u^n~s ! ∧ V~s !, n~s ! ∧ NS~s !&
knS

~s !. (A10)

Inverting this, we obtain the expression given in the text for the surface-normal curvature,

knS
~s ! 5

u@n~s ! ∧ NS~s !# ∧ V~s !u^n~s ! ∧ V~s !, n~s ! ∧ NS~s !&

^NS~s ! ∧ V~s !, n~s ! ∧ V~s !&un~s ! ∧ NS~s !u2 k~s !. (A11)
2. Spherical Perspective
Under spherical projection, the curvature of a contour is
measured by its geodesic curvature on the view sphere.
The contour itself is given by a curve, x(s), on the view
sphere, and the viewing direction at any point on the con-
tour is given by V(s) 5 2x(s). The spherical analog to
the normal along a contour in a planar image is the vector
in the tangent plane of the spherical image that is per-
pendicular to the tangent of the contour,

w~s ! 5 t~s ! ∧ V~s !. (A12)

The geodesic curvature of the contour is given by the pro-
jection of the contour’s curvature vector onto the the tan-
gent plane of the view sphere,

kg~s ! 5 K ]t~s !

]s
, w~s !L . (A13)

It is straightforward to show that this is equivalent to

kg~s ! 5 K ]w~s !

]s
, t~s !L . (A14)

Because spherical projection is locally orthographic, w(s)
is related to the tangent of the 3D curve from which a con-
tour projects by equation (A1)

w~s ! 5
T~s ! ∧ NS~s !

uT~s ! ∧ NS~s !u
. (A15)

Differentiating and substituting into equation (A14) gives
for the geodesic curvature
kg~s ! 5
^]T~s !/]s ∧ V~s !, t~s !&

uT~s ! ∧ V~s !u
1

^T~s ! ∧ ]V~s !/]s, t~s !&

uT~s ! ∧ V~s !u

2
^]T~s !/]s ∧ V 1 T~s ! ∧ ]V~s !/]s, T~s ! ∧ V&^T~s ! ∧ V, t~s !&

uT~s ! ∧ Vu3 . (A16)

As before, the last term goes to zero. Also, because V(s) 5 2x(s), ]V(s)/]s 5 2t(s) and the second term goes to zero,
leaving
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kg~s ! 5

K ]T~s !

]s
∧ V~s !, t~s !L

uT~s ! ∧ V~s !u
. (A17)

This is equivalent to equation (A5) for the orthographic case, and the remainder of the derivation is equivalent, with one
exception, to that for orthographic projection. The only difference is in the expression for ]s8/]s. In the case of per-
spective projection, this term must be multipled by a distance scaling factor, r, that is equal to the distance from the point
in the world to the center of projection. The normal curvature of a surface viewed under spherical perspective is there-
fore related to contour curvature by Eq. (A11) with an added distance scaling term,

knS
~s ! 5

1

r~s !

u@n~s ! ∧ NS~s !# ∧ V~s !u^n~s ! ∧ V~s !, n~s ! ∧ NS~s !&

^NS~s ! ∧ V~s !, n~s ! ∧ V~s !&un~s ! ∧ NS~s !u2 kg~s !. (A18)
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