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9 Most research on depth cue integration has focused on stimulus regimes in which stimuli contain the small cue conflicts that
10 one might expect to normally arise from sensory noise. In these regimes, linear models for cue integration provide a good
11 approximation to system performance. This article focuses on situations in which large cue conflicts can naturally occur in
12 stimuli. We describe a Bayesian model for nonlinear cue integration that makes rational inferences about scenes across the
13 entire range of possible cue conflicts. The model derives from the simple intuition that multiple properties of scenes or
14 causal factors give rise to the image information associated with most cues. To make perceptual inferences about one
15 property of a scene, an ideal observer must necessarily take into account the possible contribution of these other factors to
16 the information provided by a cue. In the context of classical depth cues, large cue conflicts most commonly arise when one
17 or another cue is generated by an object or scene that violates the strongest form of constraint that makes the cue
18 informative. For example, when binocularly viewing a slanted trapezoid, the slant interpretation of the figure derived by
19 assuming that the figure is rectangular may conflict greatly with the slant suggested by stereoscopic disparities. An optimal
20 Bayesian estimator incorporates the possibility that different constraints might apply to objects in the world and robustly
21 integrates cues with large conflicts by effectively switching between different internal models of the prior constraints
22 underlying one or both cues. We performed two experiments to test the predictions of the model when applied to estimating
23 surface slant from binocular disparities and the compression cue (the aspect ratio of figures in an image). The apparent
24 weight that subjects gave to the compression cue decreased smoothly as a function of the conflict between the cues but did
25 not shrink to zero; that is, subjects did not fully veto the compression cue at large cue conflicts. A Bayesian model that
26 assumes a mixed prior distribution of figure shapes in the world, with a large proportion being very regular and a smaller
27 proportion having random shapes, provides a good quantitative fit for subjects’ performance. The best fitting model
28 parameters are consistent with the sensory noise to be expected in measurements of figure shape, further supporting the
29 Bayesian model as an account of robust cue integration.
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33

34
35 Introduction

36 Images contain many different cues to the three-dimen-
37 sional (3D) layout of objects in a sceneVretinal disparity,
38 motion, texture, figure shape, and shading. The visual
39 system integrates these cues to estimate objects’ 3D
40 properties both for perception and to guide action. When
41 different cues suggest similar values for a scene parameter
42 (curvature, slant, etc.), one can reasonably approximate
43 cue integration as a linear combination of the estimates
44 suggested by each cue individually. A large body of
45 contemporary research has focused on how the human
46 visual system integrates cues when operating in this linear
47 regime (Alais & Burr, 2004; Jacobs, 2002; Johnston,
48 Cumming, & Landy, 1994; Johnston, Cumming, &
49 Parker, 1993; Landy, Maloney, Johnston, & Young,
50 1995; Young, Landy, & Maloney, 1993). Thus, for
51 example, research has shown that humans weight cues,
52 both within and across sensory modalities, according to
53 their relative reliabilities. As cue reliability changes across

54stimulus conditions, so do the weights that subjects give to
55the cues (Alais & Burr, 2004; Ernst & Banks, 2002; Hillis,
56Watt, Landy, & Banks, 2004; Knill & Saunders, 2003).
57The fact that cue weights in a local linear model of cue
58integration change across stimulus conditions reflects one
59form of global nonlinearity in how the brain integrates
60cues. Another potential form of nonlinearity can arise
61when sensory cues suggest very different estimates of a
62scene parameter, requiring the use of nonlinear, robust
63strategies for integrating cues (Landy et al., 1995). This
64article describes a Bayesian approach to modeling cue
65integration in large-conflict situations and describes two
66experiments designed to test a Bayesian model for
67integrating figural shape cues and binocular disparity cues
68to surface slant. The analysis provides a test of the
69explanatory power of the Bayesian approach for charac-
70terizing nonlinear, robust cue integration behaviors.
71Pictures provide a prototypical, if somewhat artificial,
72example of large cue conflicts. Pictorial cues suggest the 3D
73layout of the photographed scene, but binocular disparities
74suggest a flat surface. In these cases, our brains resolve the
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75 conflict by supporting two modes of viewingVa real mode
76 and a depicted mode. Asked to grasp the page, we would
77 orient our hands to match the slant of the page; however, we
78 also see the depicted surfaces as having slant, curvature,
79 and variations in depth that are different than those of the
80 printed page. What happens in the real world when faced
81 with large cue conflicts, when an observer cannot use the
82 pictorial explanation to explain away the conflict? How, for
83 example, does the brain interpret retinal image information
84 when the texture projected from a surface suggests an
85 orientation very different from that suggested by binocular
86 disparities?
87 One answer is that the visual system should veto one of
88 the two cues in a process akin to outlier rejection in
89 statistics (Landy et al., 1995). Which cue to veto could
90 depend on which one is least reliable or, when more than
91 two cues are available, which one is most inconsistent
92 with the others. As with many approaches to outlier
93 rejection in statistics, these strategies are heuristics for
94 deciding which cue (or cues) to reject. Consideration of
95 the situations in natural viewing that lead to large cue
96 conflicts suggests a principled Bayesian approach to the
97 problem. The fundamental observation underlying the
98 approach is that most cues rely on a mixture of possible
99 prior assumptions or constraints about objects in the world
100 (Knill, 2003; Yuille & Bulthoff, 1996). Some constraints
101 render cues reliable and some less so. Multiple cues can
102 interact to effectively determine which constraints apply in
103 a given scene. Texture information provides a prototypical
104 example. Surface textures may be homogeneous and
105 isotropic (have no global orientation); they may simply be
106 homogeneous or they may be neither. At a finer level of
107 categorization, some homogeneous textures are stochastic,
108 whereas others are regular. The information provided by
109 image textures depends critically on which model applies
110 to the surface texture being viewed. Thus, for example,
111 when stereoscopic disparities specify a slant very different
112 from the slant suggested by texture, as interpreted using an
113 isotropy assumption, a rational visual system might
114 determine that the most likely interpretation is that the
115 surface texture is not isotropic (but is perhaps homoge-
116 neous). This would appear as cue vetoing or, at least,
117 down-weighting the texture cue (Knill, 2003). Similar
118 observations apply to almost all monocular depth cues
119 (e.g., motions may be rigid, elastic, etc.). In the real world,
120 the visual system must necessarily take into account the
121 possibility that any of these prior models might apply to
122 an object property when interpreting a visual cue.

123

124
125 A normative model for robust cue
126 integration

127 The information provided by a pair of cues about a
128 surface property or set of surface properties, S

Y
, is given

129by the posterior probability density function p S
Y
kI
Y

a; I
Y

b

� �
,

130where I
Y

a represents the image measurements associated

131with cue a and I
Y

b represents the image information

132associated with cue b. When p S
Y
kI
Y

a; I
Y

b

� �
is narrowly

133peaked around a particular set of values of S
Y
, the image

134information reliably determines the perceptual estimate of
135S

Y
. Using Bayes’ rule and assuming that the cues are

136conditionally independent (e.g., that the sensory noise
137associated with each cue is independent), we can write the
138posterior as the product of likelihood functions associated
139with each cue and a prior density function on S

Y
,

p S
Y
jI
Y

a; I
Y

b

� �
¼

p I
Y

ajS
Y

� �
p I

Y

bjS
Y

� �
p S

Y
� �

p I
Y
a; I

Y
b

� � : ð1Þ

140141

142The denominator is a constant (it depends only on the
143given image measurements and not on S
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147When the likelihood functions associated with each cue
148and the prior are all Gaussian, both the mean and the
149mode of the posterior density is a weighted sum of the
150means (or modes) of those functions. The weights are
151inversely proportional to the variance of each of the
152functions, leading to the now well-tested hypothesis that
153subjects, when they integrate cues linearly, should weight
154sensory cues in inverse proportion to their individual
155uncertainty (Alais & Burr, 2004; Ernst & Banks, 2002;
156Hillis et al., 2004; Knill & Saunders, 2003). A little
157thought, however, reveals that the Gaussian model is not a
158good model of the true likelihood functions that should be
159associated with each cue. In this section, we will explore
160one particular feature of more naturalistic models of the
161likelihood functions that, when built into a Bayesian
162observer, gives rise to robust cue integration behavior:
163apparent down-weighting of one or another cue in the
164presence of large conflicts.
165Most monocular depth cues derive their informativeness
166from prior constraints on hidden parameters describing
167object or scene properties that an observer is not
168necessarily estimating. For example, the shapes of figures
169in an image only provide cues to the figure’s 3D
170orientation because of statistical constraints on the shapes
171of figures to be found in our environment. Because figures
172come in different categories (symmetric, isotropic, ran-
173dom, etc.), the true prior probability density function over
174the space of shape parameters is really a mixture of
175qualitatively different priors. The important consequence
176of this structure for cue integration is that the likelihood
177function associated with a cue that depends on a mixture
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178 of priors is itself an additive mixture of likelihood
179 functions. Each component likelihood function is derived
180 using a different prior model and then weighted by the
181 probability that the prior model applies to the object being
182 viewed (e.g., the probability that a figure is symmetric)
183 and added together to form the full likelihood function for
184 the cue. This is expressed in the equation
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185186 where I
Y

is a vector representing the image measurements
187 associated with a cue, S

Y
is a vector representing the

188 object parameters being estimated, and Mi are the different
189 prior models used to compute the components of the
190 mixed likelihood function. :i are the probabilities asso-
191 ciated with each model (e.g., the probability that a surface
192 texture is isotropic).
193 In general, the likelihood functions resulting from such
194 mixtures can be arbitrarily complex with, for example,
195 multiple peaks for different values of S

Y
. Much of the

196 structure in the priors, however, is hierarchical, and the
197 different prior models that could possibly apply to a given
198 image can be arranged according to the degree to which
199 they constrain the hidden parameters. This formally
200 appears as a set of priors that restrict the space of
201 allowable interpretations of the hidden parameters to
202 lower and lower dimensional subspaces of the total
203 parameter space. The information provided by the shapes
204 of ellipses in the retinal image about surface slant
205 provides a particularly simple example of this. As
206 illustrated in Figure 1, human observers typically perceive
207 elliptical figures in an image as slanted circles. This
208 reflects a strong prior belief that circles are the most
209 common form of ellipse found in our environment.
210 Because not all ellipses in the world are circles, a
211 reasonable prior model for ellipses in the world is that
212 they come in two classesVrandomly shaped ellipses and
213 circles. The former would be defined by a prior density
214 function over the range of aspect ratios. The latter would
215 be defined by a density function that concentrates all of

216the probability at a single aspect ratio (one). The like-
217lihood function for slant derived from the shape of an
218ellipse in the image is an additive mixture of the
219likelihoods associated with each of the two prior models
220on figure shapes in the world. The model likelihood
221functions depend both on the amount of noise in sensory
222measurements of aspect ratio and on the spread of the
223prior density function of aspect ratios associated with the
224models; therefore, the likelihood function for the circle
225prior will be narrower than the likelihood for the random
226ellipse prior. Figure 2 illustrates the calculation of this
227type of mixed likelihood function.
228Figure 3 illustrates the behavior of a Bayesian model for
229estimating surface slant-from-figure shape information
230and stereoscopic information that incorporates a mixture
231of prior models for figure shape. The joint likelihood
232function computed from figure shape and stereopsis is the
233product of the mixed likelihood function for slant-from-
234figure shape and the one derived from stereoscopic
235information, which gives
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236237where I
Y

F represents the image measurements that charac-
238terize figure shape (in our example, this would be aspect
239ratio) and I

Y

s represents the image measurements that
240characterize stereoscopic disparities. Which of the two
241terms dominates the likelihood function depends both on
242the prior probabilities associated with the two models for
243figure shape (:circle and :ellipse) and on whether the
244stereoscopic likelihood function is centered near the peak
245of the figure shape likelihood or is centered over one of its
246extended tails. When stereoscopic information suggests a
247slant similar to that suggested by the circle interpretation
248of a figure, the combined likelihood function is centered at
249a point that is well characterized by a weighted sum of the
250two. As the deviation between the two increases, the peak
251of the joint likelihood function shifts toward the peak of
252the stereoscopic likelihood function until, at high ‘‘con-
253flicts’’, it almost perfectly aligns with the stereoscopic
254peak. At this point, a Bayesian estimator will appear to
255have nearly turned off the figure shape cue. This is
256because the stereoscopic information at large conflicts is
257not consistent with the circle model and the random
258ellipse model in the mixed likelihood function for figure
259shape dominates the combined likelihood.
260Figure 3D shows how this behavior reflects itself in the
261weights that a Bayesian observer would appear to give to
262the compression cue as a function of the size of the cue
263conflict. Note that we use the term compression cue to
264refer to the slant suggested by the shape of the ellipse in

Figure 1. Both figures appear to be circular cylinders but with
different orientations. The sides of the figures have the same
lengths and orientations. Only the aspect ratios of the elliptical
outlines at the tops and bottoms of the figures differ.
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265 the image under the assumption that the figure is a circle
266 in the world. The three plots show the patterns of weights
267 one would observe for an observer who assumes each of
268 three prior models on figure shapes in the world. In the
269 first model, all ellipses in the world are assumed to be
270 circles. In the second model, all ellipses in the world are
271 assumed to be randomly drawn from a set of ellipses with
272 aspect ratios having a distribution that is peaked at 1
273 (biased toward circles) but has a standard deviation of
274 0.25 (circles are not a privileged category). The third
275 model is a mixture of the first two. It reflects a world in

276which 90% of figures are circles, but 10% are drawn from
277the random set of ellipses characterized by Model 2. Note
278that for small cue conflicts, the Bayesian observer using
279the mixed model operates in a regime that is intermediate
280between what would be predicted from the two compo-
281nent models on figure shape; that is, both models
282contribute to the behavior of the observer. This is true
283even at the smallest conflicts, where the contribution of
284the random ellipse model decreases the apparent weight
285given to the compression cue. The apparent weight given
286to the compression cue decreases smoothly as the conflict

Figure 2. Given the shape of an ellipse in the retinal image, the likelihood function for slant is a mixture of likelihood functions derived from
different prior models on the aspect ratios of ellipses in the world. The likelihoods shown above were derived by assuming that noise
associated with sensory measurements of aspect ratio has a standard deviation of 0.03 (taken from thresholds for discriminating aspect
ratios of ellipses; Regan & Hamstra, 1992), that the prior distribution of aspect ratios of randomly shaped ellipses in the world has a
standard deviation of 0.25, and that 90% of ellipses in the world are circles. The mixture of narrow and broad likelihood functions creates a
likelihood function with long tails, as shown in the blowup. The existence of these tails is the critical feature that supports robust cue
integration.
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287 between cues increases until it asymptotes at the weights
288 predicted by less constrained model of figures.
289 Several experimental results are consistent with a
290 Bayesian model for robust cue integration. Knill (2003)
291 has shown that subjects turn off the isotropy constraint for

292interpreting surface textures when viewing monocular
293images of slanted textures that have been strongly com-
294pressed in one direction (are very anisotropic). That is, as
295one compresses a surface texture by larger and larger
296amounts before projecting it into the image, subjects

Figure 3. (A) When stereoscopically viewing an ellipse with an aspect ratio (in the world) close to 1 (in this case, 0.9), the likelihood
function for the figure shape cue is shifted away from the likelihood function for the disparity cue because of the strong bias to interpret the
figure as a circle. The figure shape likelihood function shown here is a long-tailed mixture of likelihoods derived using the same prior
density and noise parameters used to generate the likelihood function in Figure 2. The stereoscopic likelihood function is Gaussian with a
standard deviation of 3.5-, reflecting the uncertainty in slant-from-stereo discrimination judgments found experimentally (Hillis et al., 2004).
The product of the likelihood functions lies intermediate between the peaks of the two cues’ likelihood functions. The best estimate of slant in
this case lies in between the estimates one would derive from either cue individually. (B and C) For projections of ellipses with aspect ratios
very different from 1.0 (0.8 and 0.7, respectively), the combined cue likelihood function gradually shifts to become more concentrated near
the slant-from-disparity likelihood function. For ellipses with aspect ratios very different from 1 (large cue conflicts), the stereoscopic
likelihood function is concentrated over the tail of the figure shape likelihood. The long tail in the figure shape likelihood function causes the
shift in the combined likelihood toward the stereoscopic likelihood. One can use these likelihood functions as the basis for an optimal
Bayesian slant estimator by combining the joint likelihood with a prior on slant (the generic viewpoint prior is sin(A)) and defining a cost
function on errors in slant estimates. (D) Predicted compression cue weights for a Bayesian estimator that calculates the mean slant
conditioned on the image information, plotted as a function of the difference between the slant suggested by the compression cue (the
slant suggested by a circle interpretation of the figure) and the slant suggested by the disparity cue (assuming a stereoscopic slant of 35-).
A compression cue weight of 0.5 reflects equal weighting of the compression cue and stereopsis. Compression cue weights are shown for
an estimator that uses three different prior models for ellipses in the worldVall circles, all random ellipses drawn from a distribution of
aspect ratios (SD = 0.25), or 90% circles and 10% random ellipses drawn from the same distribution.
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297 initially show biases to interpret the texture as isotropic,
298 but eventually, the bias weakens and almost disappears.
299 The result is consistent with a model that uses both texture
300 foreshortening (which is subject to the isotropy bias) and
301 texture scaling (which is not) as cues to slant. At large
302 compression factors, the scaling information is strong
303 enough to turn off the isotropy bias. The Bayesian model
304 of robust cue integration predicts that measurements of the
305 weights that subjects give to cues will spontaneously and
306 smoothly vary as a function of the conflict between the
307 cues. In particular, because stereoscopic cues do not rely
308 on hidden prior assumptions on objects in the same way
309 that pictorial cues do, subjects should appear to down-
310 weight pictorial cues relative to binocular disparities as
311 the conflict between the two increases (but see the
312 discussion for possible violations of this behavior).
313 We performed two experiments to test whether subjects
314 show this behavior when integrating the information
315 provided by the shapes of 2D figures in the image and
316 stereoscopic disparities to judge the slants of planar
317 surfaces. We fit a Bayesian model to subjects’ data to test
318 whether a Bayesian account parameterized by reasonable
319 levels of sensory noise (taken from previous psychophys-
320 ical literature) is consistent with subjects’ performance
321 and to derive a model of the prior distribution on figure
322 shape that underlay subjects’ judgments. The results show
323 that subjects did appear to down-weight the information
324 provided by figure shape as conflicts with binocular
325 disparity grew in magnitude but that they did not
326 completely veto the shape cue. Rather, their behavior
327 was well fit by a Bayesian model that assumes two
328 categories of elliptical figuresVcircles and ellipses with
329 random aspect ratios, whose probability density peaks at 1
330 (i.e., still shows a preference for circles).
331

332
333 Preview

334 We measured subjects’ judgments of surface slant for
335 stereoscopic images of ellipses, as depicted in Figure 4.
336 Subjects are strongly biased to see slanted ellipses as
337 circles. The cue to surface orientation provided by the
338 orientation and aspect ratios of figures under an assump-
339 tion of circularity (for ellipses) or isotropy (for arbitrary
340 figures) is typically referred to as compression. The
341 advantage of using ellipses as stimuli is that, under
342 perspective projection, slanted ellipses project to ellipses
343 in the retinal image, retaining the fundamental ambiguity
344 in the percept. This means that the only monocular cue to
345 3D orientation provided by these stimulus images is the
346 aspect ratio and orientation of an ellipse in the image.
347 Furthermore, the information about surface orientation
348 provided by ellipses is easily characterized by a prior on
349 aspect ratio and a model of sensory noise on the measured
350 aspect ratios and orientations of ellipses in the image. The
351 ellipses were filled with random dots to provide a rich

352source of stereoscopic disparities while limiting texture
353information. Texture density contributes minimally to
354slant perception (Braunstein & Payne, 1967; Buckley,
355Frisby, & Blake, 1996; Cumming, Johnston, & Parker,
3561993; Cutting & Millard, 1984; Knill, 1998a, 1998b), and
357we randomized the sizes and shapes of the texels to reduce
358the salience of local texture shape cues. Nevertheless, the
359textures potentially provided some information about
360slant. Because this was always consistent with the stereo-
361scopic cues, further references to stereoscopic cues or
362stereoscopic slant, strictly speaking, refer to combined
363stereoscopic and texture cues.
364The experiments measured subjects’ estimates of surface
365slant for binocularly presented ellipses with a range of
366aspect ratios. Images of ellipses with different aspect ratios
367have different degrees of conflict between the orientations
368suggested by the compression cue and stereoscopic
369disparities. All ellipses were oriented horizontally and
370slanted around the horizontal axis to simplify the analysis
371and limit the number of experimental conditions. Thus,
372conflicts were limited to the slant of the figure (angle away
373from fronto-parallel). Subjects were asked to judge the
3743D orientations of the figures by adjusting a stereoscopi-
375cally presented line probe to appear perpendicular to the
376figures, as in Figure 4. Experiment 1 measured cue
377weights when stereoscopic disparities specified a slant of
37835-. Experiment 2 measured cue weights when stereo-
379scopic disparities specified a slant of 55-.
380We formulated the optimal Bayesian estimator for
381estimating slant from stereoscopic images of ellipses using
382a prior distribution of aspect ratios that contained a mixture
383of (1) a delta function at 1 (circles) and (2) a broader dis-
384tribution of aspect ratios. Data from previous experiments

Figure 4. The stimulus used in the experiments. Subjects adjusted
the 3D orientation of the line probe to appear perpendicular to the
surface.
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385 allowed us to estimate the average uncertainty in subjects’
386 sensory uncertainty in estimating slant-from-stereo dispar-
387 ities. The principal free parameters in the model, therefore,
388 were the uncertainty in sensory estimates of the aspect
389 ratios of ellipses in the retinal image and parameters
390 describing the prior distribution of aspect ratios. We fit
391 this model to the data from the experiments to test whether
392 it accurately characterized subjects’ nonlinear behavior in
393 combining the figural and binocular information in the
394 stimulus images. Bayes’ optimality predicts that the same
395 prior model will accurately fit data from both of the slant
396 conditions used in Experiment 1 and 2.
397

398
399 Experiments

400 Figure 4 shows an example of the stimuli used in the
401 experiments. Both the surfaces and the line probes were
402 presented stereoscopically. On each trial, the orientation
403 of the probe was randomized in an annular region on the
404 view sphere around the true (stereoscopic) orientation of
405 the stimulus surface. Subjects used the computer mouse to
406 adjust the 3D orientation of the line probe to appear
407 perpendicular to the surface in the stimulus. Test stimuli
408 consisted of stereoscopic views of an elliptical figure filled
409 with randomly positioned dots at a fixed slant (35- for
410 Experiment 1 and 55- for Experiment 2). Surface tilt was
411 fixed at vertical in all stimuli. Test stimuli were given
412 random aspect ratios by compressing or stretching a circle
413 in the vertical direction (in the plane of the surface) so as
414 to keep the area of the figure constant. Different subjects
415 were used in the two experiments to keep the experiments
416 short (two 1-hr sessions each) and to minimize potential
417 effects of learning.
418 Data analysis was performed on subjects’ slant settings
419 as measured by the matching probe orientations. Because
420 both subjects’ slant estimates and their estimates of probe
421 orientation were likely to be biased, we randomly
422 intermixed a large number of baseline trials containing
423 stereoscopic images of circles at slants ranging from 15-
424 to 65-. Data from these conditions allowed us to map
425 subjects’ probe settings on test trials to equivalent slants
426 of cue-consistent stimuli. The adjusted slants were used
427 for analysis (e.g., to compute cue weights).

428 Methods
429 Visual stimuli

430 Visual displays were presented on a computer monitor
431 viewed through a mirror (see Figure 5) using CrystalEyes
432 shutter glasses to present different stereo views to the left
433 and right eyes. Displays had a resolution of 1,280 � 1,024
434 pixels and a refresh rate of 118 Hz (59 Hz for each eye’s
435 view). Stimuli were drawn in red to take advantage of the
436 comparatively faster red phosphor of the monitor and

437prevent interocular cross talk. Viewing distance to the
438monitor (or its virtual image behind the mirror) was
439approximately 50 cm, although it varied slightly from
440subject to subject. The viewing angle to the monitor was
441approximately 38-, although it, too, varied slightly from
442subject to subject.
443A rectangular black occluder was placed on the mirror
444to obscure the frame of the monitor from subjects’ view.
445Stimuli were centered on the center of the virtual image of
446the CRT in 3D space. Stimuli consisted of planar,
447elliptical disks filled with random dot textures. Disks
448were created from circles with a radius of 6 cm. Figures in
449the baseline stimuli, consisting of circles projected at
450slants ranging from 15- to 65- viewed from 50 cm,
451subtended approximately 13.8- horizontally and 5.8–13.4-
452vertically from the point of view of a subject. Because
453figures were rotated around the horizontal axis, the
454horizontal extent of the figures in the stimulus images
455changed only slightly as a function of surface slant. Test
456stimuli containing ellipses with aspect ratios different
457from 1 were created by compressing or stretching circles
458in a direction perpendicular to the horizontal axis. Figures
459were then scaled to maintain their area in the plane of the
460surface. Thus, for example, an ellipse with an aspect ratio
461of 0.8 had a horizontal radius of 7.5 cm in the virtual
462world. Random dot textures were from a constrained
463random lattice of points in the plane samples from a
464stochastic reaction–diffusion process that effectively

Figure 5. The viewing arrangement used in the experiments.
Stimuli appeared as slanted ellipses floating in space behind the
mirror.
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465 perturbed the positions of the points in the lattice away
466 from a rectangular grid. The resulting lattices represented a
467 trade-off between a completely random selection of points
468 in the plan and a regular lattice that would have created
469 linear perspective cues. The points in the random lattice
470 were used to create a Voronoi patternVa collection of
471 polygons centered on the points in the lattice that tiled
472 the plane. The randomly shaped polygons generated in this
473 way were then shrunk to a width of 0.22 cm (È15 arcmin),
474 on average, to create a set of randomly shaped ‘‘dots’’. By
475 generating dots in the texture pattern in this way, we
476 weakened local figure shape cues that would be provided
477 were the dots drawn as circles. The textures were not
478 compressed with the ellipses for the noncircular ellipse
479 stimuli; thus, texture cues, to the extent that subjects could
480 use them, were always consistent with the stereoscopically
481 defined slant. Twenty different random textures were used
482 in the experiment.
483 A line probe was rendered with its base at the center of
484 the stimulus surfaces. The line itself was rendered as a
485 cylinder with a radius of 0.25 cm. It had balls attached to
486 the tops and bottoms to eliminate monocular cues to line
487 orientation that would have been provided by the
488 projections of the circular cross sections of the cylinder.
489

490 Apparatus

491 Figure 5 shows a schematic diagram of the viewing
492 apparatus used in the experiment. Subjects placed their
493 heads in a chin rest, resting against a headrest. Subjects
494 adjusted the orientation of the line probe using a mouse
495 placed on the table positioned under the mirror. Spatial
496 calibration of the virtual environment required computing
497 the positions of subjects’ two eyes relative to the virtual
498 image of the screen. These parameters were determined at
499 the start of each experimental session using an optical
500 matching procedure. The backing of the half-silvered
501 mirror was temporarily removed so that subjects could see
502 their hand and the monitor simultaneously. A test grid
503 containing thin rods with varying heights and positions
504 was placed on a tabletop aligned with the monitor under
505 the mirror. Subjects aligned a crosshair on the display
506 with the tips of rods on the test grid. A total of 23 positions
507 subtending approximately 35- � 7- of visual angle were
508 matched. Matches were performed monocularly in sepa-
509 rate sequences for left and right eyes. The combined
510 responses for both eyes were used to determine a globally
511 optimal combination of 3D reference frame and eye
512 position. The cyclopean reference frame used to create
513 stimuli had its origin at the point halfway between the two
514 eyes and had a horizontal axis defined by the vector
515 difference between the two eyes’ positions.
516

517 Procedure

518 Sixteen stimulus conditions were used in the experi-
519 ment. Six of these were baseline conditions containing

520circular stimuli presented at slants of 15-, 25-, 35-, 45-,
52155-, and 65-. The other 10 ‘‘test’’ conditions were ellipses
522presented at a slant of 35- (Experiment 1) or 55-
523(Experiment 2). In Experiment 1, the aspect ratios of the
524ellipses in the test conditions were 0.6, 0.7, 0.8, 0.85, 0.9,
5250.95, 1.05, 1.1, 1.15, and 1.2. This created cue conflicts
526between the compression cue and stereoscopic disparities
527of 25.6-, 20-, 14.1-, 10.9-, 7.5-, 3.9-, j4.3-, j9.3-,
528j15.4-, and j24.4-. In Experiment 2, the aspect ratios of
529ellipses in test stimuli were 0.3, 0.5, 0.6, 0.7, 0.8, 0.9, 1.1,
5301.2, 1.35, and 1.5. This gave a similar range of cue
531conflicts as in Experiment 1V25.1-, 18.3-, 14.9-, 11.3-,
5327.7-, 3.9-, j4.1-, j8.5-, j13.2-, and j24.4-. Subjects
533performed two sessions on different days, each containing
534four blocks of trials. Each block contained 14 each of the
535baseline conditions and 4 each of the test conditions,
536giving a total of 124 trials per block. Subjects took, on
537average, 7 min to complete a block; hence, each session
538took approximately 45 min to run, including the time for
539calibration and breaks between blocks. Stimuli were
540presented with an intertrial interval of 500 ms and
541remained on the display until subjects pressed the mouse
542button to indicate a match.
543

544Subjects

545Subjects were 16 undergraduates at the University of
546Rochester who were naive to the goals of the experiment.
547There were eight subjects in Experiment 1 and eight in
548Experiment 2. Subjects had normal or corrected-to-normal
549vision and normal stereo vision. 550

551

552Results

553Experiment 1

554Figure 6A shows slant settings for three representative
555subjects in the baseline conditions. Subjects’ settings in
556the test conditions were all well within the range of their
557baseline settings for stimuli between 25- and 45-; there-
558fore, we used subjects’ slant settings on those baseline
559trials to remove biases from subjects’ slant settings in
560the test trials. Because of significant nonlinearities in
561some subjects’ slant judgments (see, e.g., the red curve
562in Figure 6A), we performed a least squares, quadratic
563regression to fit subjects’ probe slant settings as a function
564of the true stimulus slant,

sprobe ¼ as2stimulus þ bsstimulus þ cþ Noise; ð5Þ

565566where sprobe represents subjects’ probe slant settings and
567sstimulus represents the stimulus slant. We then computed
568corrected (unbiased) slant settings, ŝprobe, on test trials by
569inverting this equation

ŝ ¼
jbþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 j 4a c j sprobe

� �q
2a

ð6Þ

AQ1
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570571 The corrected slant settings, ŝ, are estimates of the slants
572 of cue-consistent stimuli (stereoscopic images of circles)
573 that would appear to have the same slants as the test
574 stimuli. Figure 6B shows the same three subjects’
575 corrected slant settings on test trials, as a function of the
576 aspect ratio of the ellipse projected into the stimulus.
577 Figure 6C shows average, corrected slant settings across
578 all eight subjects.
579 As illustrated in the figure, subjects showed an initial
580 bias to interpret the figure as a circle, but this bias
581 weakened at aspect ratios very different from 1. Figure 6D
582 replots subjects’ average slant settings on test trials as a
583 function of the conflict between the slant suggested by the
584 compression cue (the circle interpretation of a stimulus)
585 and the stereoscopic cue (fixed at 35- for these trials). For
586 aspect ratios close to 1, subjects behaved as if linearly

587combining the slant suggested by stereopsis and the slant
588suggested by the compression cue but appeared to down-
589weight the compression cue at large conflicts. A linear cue
590integration model approximates subjects’ slant settings for
591a given stimulus condition as a weighted linear sum of the
592slants suggested by the compression cue and by stereo-
593scopic disparities,

ŝ ¼ wcompression scompression þ wstereo sstereo

¼ wcompression scompression þ 1jwcompression

� �
35; ð7Þ

594595where scompression represents the slant suggested by the
596compression cue or, equivalently, the slant consistent with
597a circle interpretation of the projected ellipse. Rearranging

Figure 6. (A) Slant settings for three subjects on baseline trials in Experiment 1. (B) Corrected slant settings on the test stimuli for the
same three subjects as a function of the aspect ratio of the ellipse. Corrected slant settings were computed by inverting the fitted quadratic
function that mapped stimulus slant and subjects’ settings on baseline trials at slants of 25-, 35-, and 45-. (C) Average corrected slants
across all eight subjects, as a function of ellipse aspect ratio. (D) The same data replotted as a function of the slant suggested by
the compression cue (the circle interpretation of the test stimuli) at each of the 10 test aspect ratios. Error bars for individual subjects
(A and B) are standard errors of the mean settings for those subjects. For the grouped data (C and D), they are standard errors of the
means computed across subjects.
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598 terms, we arrive at an expression for the weight that
599 subjects effectively gave to the compression cue in each
600 stimulus condition

wcompression ¼
ŝj35

scompressionj35
; ð8Þ

601602 For the slant and field of view used in the experiment, the
603 slant suggested by the compression cue is given very
604 accurately by the cosine law approximation of perspective
605 foreshortening,

scompression ¼ cosj1 ! cos 35:ð Þ½ �: ð9Þ
606607

608 Equation 8 provides an empirical measure of the in-
609 fluence of the circle bias on subjects’ judgments. Figure 7
610 shows subjects’ average corrected slant estimates replot-
611 ted as compression cue ‘‘weights’’. To test the statistical
612 significance of the effect of ellipse aspect ratio (or
613 equivalently, the cue conflict) on the effective weights
614 that subjects gave to the compression cue, we performed a
615 two-way ANOVA with subjects as a factor. The results
616 showed that the effect of aspect ratio was significant,
617 F(9, 7) = 6.73; p G .0001.
618

619 Experiment 2

620 We analyzed the results of Experiment 2 in the same
621 way, but we used probe slant settings at baseline slants of
622 45-, 55-, and 65- to derive the quadratric correction for
623 the slant settings. Results are shown in Figures 8 and 9.
624 Again, the effect of aspect ratio on the weights that
625 subjects gave to the compression cue was significant,
626 F(9, 7) = 2.89; p G .006.
627

628

629 Discussion of results

630 Several features are notable in the results shown in
631 Figures 7 and 9. First, the influence of the circle bias
632 peaked for images of ellipses that were nearly circular but
633 dropped off as ellipses became more compressed or
634 elongated. Second, the influence of the circle bias was
635 asymmetric as a function of the cue conflict. At negative
636 conflicts (when the circle bias suggested a lower slant than
637 stereopsis), the influence of the circle bias decreased
638 monotonically with the magnitude of the conflict. At
639 positive conflicts, the influence of the circle bias leveled
640 off at a near-constant value. This would not have been
641 expected from a pure form of cue vetoing. Subjects did not
642 ‘‘turn off’’ the compression cue but appeared to down-
643 weight it. Averaging slant settings across trials and
644 subjects as we did would have blurred out sharp transitions
645 that might be indicative of cue vetoing. Thus, cue vetoing
646 is not inconsistent with a gradual reduction in average
647 cue weights. Cue vetoing, however, does predict that cue

648weights would have gone monotonically toward zero as
649the size of the cue conflict increased. Subjects’ compres-
650sion cue weights clearly asymptoted at large positive cue
651conflicts, however, suggesting that they effectively down-
652weighted the compression cue to a smaller nonzero value.
653Before inferring from the observed changes in cue
654‘‘weights’’ that subjects used a Bayesian strategy for
655robust cue integration based on mixtures of priors, we
656must consider several simpler accounts for the results.
657First is the possibility that subjects were biased to use
658stereoscopic information because the probe that they used
659to match the slant of the figure was presented stereoscopi-
660cally. This might affect the weights that subjects gave the
661cues for small conflicts and might bias subjects to veto the
662monocular cues at large conflicts. This account is strongly
663argued against by previous results using the same task and

Figure 7. (A) The apparent weight that subjects give to a circle
interpretation of test stimuli with aspect ratios different from 1,
computed using Equation 8. (B) The same data replotted as a
function of the conflict between the slant suggested by a circle
interpretation of the elliptical stimuli and the slant suggested by
stereoscopic disparities. Error bars are standard errors of the
mean weights computed across subjects.
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664almost the same stimuli (stimuli only differed in the
665texture used to fill the ellipses), in which we found that the
666weights that subjects gave to monocular and stereoscopic
667cues were the same when the stereoscopic probe and a
668haptic matching task were used, in which subjects
669oriented an unseen cylinder to ‘‘feel’’ like it was at the
670same orientation as the stimulus. Moreover, the stereo-
671scopic weights measured using the stereoscopic probe
672were actually lower than those measured using a motor
673task in which subjects placed a cylinder onto the stimulus
674surface (Knill, 2005).
675Second, we must consider the already well-supported
676model that changes in cue weights resulted from changes
677in cue reliability across stimulus conditions. According to
678this account, the apparent changes in weight could have
679resulted from changes in the uncertainty attached to

Figure 9. (A) The apparent weight that subjects give to a circle
interpretation of test stimuli with aspect ratios different from 1 in
Experiment 2. (B) The same data replotted as a function of the
conflict between the slant suggested by a circle interpretation of
the elliptical stimuli and the slant suggested by stereoscopic
disparities. Error bars are standard errors of the means of the
subjects’ weights.

Figure 8. (A) Corrected slant settings for three subjects on test
trials in Experiment 2, plotted as a function of an ellipse’s aspect
ratio. (B) Average corrected slants across all eight subjects, as a
function of ellipse aspect ratio. (D) The same data replotted as a
function of the slant suggested by the circle interpretation of test
stimuli at each of the 10 test aspect ratios. Error bars are standard
errors of the means.
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680 sensory estimates of the aspect ratios of ellipses in the
681 image. This assumes that because the true stimulus slant
682 was fixed within an experiment, the uncertainty in stereo-
683 scopic slant estimates remained approximately constant
684 as a function of ellipse aspect ratio. Comparing Figures 7
685 and 9 provides a quick negative answer to the simple
686 hypothesis. In Experiment 2 (Figure 9A), because ellipses
687 at higher slants were foreshortened more by perspective,
688 the projected aspect ratio of the ellipse whose real aspect
689 ratio was 0.9 was essentially equal to the projected
690 aspect ratio of the ellipse in Experiment 1 whose real
691 aspect ratio was 0.6 (0.52 vs. 0.49). Thus, the uncertainty
692 associated with the figure shape information should have
693 been essentially equivalent in these two conditions.
694 However, subjects effectively gave more weight to the
695 compression cue in this condition in Experiment 2 than in
696 Experiment 1V0.41 (T0.057 SE) versus 0.15 (T0.025 SE),
697 despite the fact that slant-from-disparity is more reliable at
698 55- (in Experiment 2) than at 35- (in Experiment 1; Hillis
699 et al., 2004; Knill & Saunders, 2003). The performance of
700 the Bayesian model that assumes a simple prior on aspect
701 ratios provides further insight into this issue. Figure 3
702 shows two such observersVone that assumes all ellipses are
703 circles and one that assumes a log-Gaussian distribution of
704 aspect ratios that is peaked at 1 (circles) and has a standard
705 deviation of 0.1. Both observers show a monotonic increase
706 in the apparent weight given to the compression cue as
707 difference between the slant suggested by the compression
708 cue and the slant suggested by stereopsis increases from
709 large negative values to large positive values, that is, as the
710 slant suggested by the compression cue increases from near
711 0- to near 60-. This behavior reflects the change in the
712 uncertainty induced by measurement noise as a function of
713 the aspect ratio of the retinal ellipse, itself caused by the
714 cosine law of projective foreshortening.
715 Finally, we should consider what effects cues like
716 accommodation and blur might have had on subjects’
717 performance. In theory, were these cues to suggest a slant
718 very different from the stereoscopic cues, they could have
719 had a significant nonlinear impact on subjects’ performance
720 because their weights would depend on the uncertainty
721 associated with the combined stereoscopic/figure shape
722 cues. This would only have had a significant impact if
723 the cues were strong. That they were not very strong is
724 argued for by the fact that the gain in subjects’ slant
725 settings as a function of stimulus slant for cue-consistent
726 stimuli was almost exactly 1, on average (see Figure 6A).
727 Because cues like accommodation suggested a fixed slant
728 (approximately 38-), any impact they would have had
729 would have been to shrink the gain of that function. While
730 it may be that the impact of the cues was counterbalanced
731 by subjective biases in subjects’ mapping between stimulus
732 and probe slant, it seems unlikely that this effect was large
733 enough to significantly impact performance. Moreover, in
734 Experiment 1, at least, the slant suggested by uncontrolled
735 for cues was almost the same as that of the stereoscopic
736 cues. In this situation, the presence of the cues would not

737have changed the predictions of the model in any
738qualitative wayVtheir contributions would only have
739shrunk somewhat the apparent weight that subjects gave
740to the compression cue.
741

742

743
744Modeling robust cue integration:
745Bayesian model selection

746A Bayesian model that uses a mixture of prior models on
747the shapes of figures in the world would seem to account
748for the qualitative pattern of subjects’ slant judgments. To
749test such an account more quantitatively, we fit a Bayesian
750model to subjects’ data. The Bayesian model has four free
751parameters. Two parameters describe subjects’ prior dis-
752tributions on aspect ratios of ellipses in the worldVthe
753proportion of circles in the world and the spread of the
754distribution of aspect ratios for ellipses that are not circles.
755The other two characterize the sensory uncertainty in
756sensory measurements of the aspect ratios of ellipses in
757the retinal image and of slant-from-disparity. Preliminary
758simulations showed that for the 55- stimuli in Experiment 2,
759the Bayesian model was slightly more skewed toward
760negative slant conflicts than subjects’ data would suggest
761but otherwise could fit the shape of the weight function
762well. We therefore added a fifth free parameter to the model
763that represented possible biases in subjects’ estimates of
764slant-from-stereo. This could arise from known biases in
765depth estimates from stereopsis or from small biases in the
766calibration procedure (e.g., of the interocular distance).

767The structure of the model

768We modeled subjects’ prior beliefs about the aspect
769ratios of ellipses in the world, !, as a mixture of a delta
770function at ! = 1 (all ellipses in the category are circles)
771and a log-Gaussian distribution over aspect ratios. The
772log-Gaussian distribution ensures that the probability
773density function for 1/! is equal to the density function
774for ! (necessary to make the prior invariant to rotations).
775The prior density function was given by

pð!Þ ¼ :circle pcircleð!Þ þ :ellipse pellipseð!Þ
¼ :circle % !j1ð Þ

þ :ellipse
1

!

1ffiffiffiffiffiffi
2:

p
A!

exp j log !ð Þ2=2A2
!

h i� �
; ð10Þ

776777where we have labeled the categories of figures as circles
778or ellipses. The prior model has two free parametersVthe
779relative probability of figures being circles, :circle
780(:ellipse = 1 j :circle), and the standard deviation of the
781log-Gaussian distribution of aspect ratios in the ellipse
782category, A!.
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783 We modeled the aspect ratio of the ellipse in a stimulus
784 image, A, as the aspect ratio of the projected ellipse
785 corrupted by random Gaussian noise,

A , ! cos Sð Þ þ 4A; ð11Þ
786787 where 4A is a random noise variable that is normally
788 distributed with mean 0 and standard deviation, AA, and S
789 is the slant of the surface. For the field of view used in the
790 experiment, the cosine foreshortening law is within 1% of
791 the true perspective foreshortening. Finally, we modeled
792 the disparity cue as an estimate of slant corrupted by
793 Gaussian noise

Sˆ stereo ¼ Sþ 4stereo; ð12Þ

794795 where 4stereo is a random noise variable that is normally
796 distributed standard deviation, Astereo. We left the mean of
797 the noise process as a free parameter to model biases in
798 perceived slant-from-stereo.
799 The likelihood function for the compression cue is a
800 weighted sum of likelihood functions derived from the
801 circle and ellipse priors on shapes in the world,

p AjSð Þ ¼ :circle pcircle AjSð Þ þ :ellipsepellipse AjSð Þ

¼ :circle

Z V

0

p AjS; !ð Þpcircle !ð Þd!

þ :ellipse

Z V

0

p AjS; !ð Þpellipse !ð Þd!

¼ 1ffiffiffiffiffiffi
2:

p
AA

:circleexp j Aj cosðSÞð Þ2=2A2
A

h i
þ

:ellipse

Z V

0

exp j Aj!cosðSÞð Þ2=2A2
A

h i
pellipse !ð Þd!

8>><
>>:

9>>=
>>;
;

ð13Þ

802803 where pellipse(!) is taken from Equation 10. The first term
804 in the mixture is an integral of the product of a Gaussian
805 density function with a delta function on !. This results in
806 a Gaussian function with ! replaced by the value that sets
807 the argument of the delta function equal to 0 (in this case,
808 ! = 1). This is equivalent to the likelihood one would
809 obtain by simply setting ! = 1, rather than integrating over
810 a delta function prior on !. The second term in the mixture
811 is an integral over the possible aspect ratios in the ellipse
812 model. This has the effect of shrinking the magnitude of
813 that component of the likelihood function. The likelihood
814 function shown in Figure 2 was computed using this model.
815 The likelihood function for stereoscopic disparities is
816 simply a Gaussian with standard deviation, Astereo, and
817 mean equal to the true slant plus the bias term. The
818 posterior distribution of slant, given the measured aspect
819 ratio of an ellipse in the image and the measured
820 stereoscopic disparities, is given by the product of this
821 Gaussian with the likelihood function for compression and
822 the prior on slant, which, assuming a generic viewpoint on
823 a surface, is given by sin(S). In the simulations described
824 below, we used a minimum mean square error estimator.

825The estimator selected as its best estimate of the slant on a
826given trial the expected value of slant computed from the
827normalized joint likelihood function. The results were
828essentially the same when we used a maximum a
829posteriori (MAP) estimator that selected the mode of the
830posterior distribution on each trial.
831

832Fitting the model to the data

833The model has five free parametersVtwo of which
834determine the sensory uncertainty associated with each
835cue, two describe the prior distribution on aspect ratios
836assumed to characterize the world, and the fifth is a bias
837term that accommodates relative biases in observers’
838estimates of slant-from-stereopsis. The data from the
839experiments do not support fitting absolute measures of
840sensory noise (which determine variability in subjects
841judgments), in part because subjects’ variability is con-
842founded with uncertainty in the probe slant settings and in
843part because their variability is increased by attentional
844lapses, decision noise, and so forth. We dealt with this
845difficulty by fixing the standard deviation of the slant-from-
846disparity noise based on data from other, more sensitive
847experiments (see the Appendix for details). The resulting
848values for Astereo were 3.5- and 2.59- for the 35- and 55-
849slant conditions, respectively. The difference reflects the
850fact that disparity cues to slant improve slightly as a
851function of increasing slant (Hillis et al., 2004).
852Because we have access only to an estimate of the
853average variance in subjects’ slant-from-stereo estimates,
854we fit the Bayesian model to the compression cue weights
855averaged across subjects, as plotted in Figures 7 and 9.
856The Appendix gives details of the model fitting procedure.
857Table 1 lists the model parameters for the best fits to the
858data from Experiment 1 and 2, respectively, and Figure 10
859plots the predicted compression cue weights for the best
860fitting models along with subjects’ data. Although not
861exactly equivalent, the parameters characterizing the best-
862fitting prior distributions were similar for the two exper-
863imental conditions. Given the approximate methods used
864to set the noise parameters for slant-from-stereo in the two
865experimental conditions, we cannot expect exact equiv-
866alence in our model fits across the two conditions. The
867estimate of the sensory noise in subjects’ visual estimates
868of aspect ratio is in fairly close accord with published data
869on aspect ratio discrimination, which range from 0.02 to
8700.04 (Regan & Hamstra, 1992). We should note, however,
871that published data for aspect ratio discrimination are for
872ellipses that subtend only 1- of visual angle. 873

874

875
876General discussion

877The impact of the subjects’ biases to interpret an
878elliptical figure as a circle shrank as the conflict between
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879 this interpretation and stereoscopic cues to slant grew, but
880 it never disappeared. In the standard terminology of cue
881 integration, subjects appeared to down-weight but not to

882veto the compression cue to slant at large conflicts with
883stereoscopic cues. Subjects’ behavior was consistent with
884a Bayesian model of robust cue integration that accom-
885modates the possibility of interpreting pictorial cues
886according to either a strong prior (circles) or a weak prior
887(ellipses with constrained aspect ratios). The model does
888not explicitly change cue weightsVit computes an
889estimate based on the likelihood function computed by
890multiplying a likelihood function for slant-from-disparity
891with a mixed likelihood function for slant-from-figure
892shape. It gradually shifts from being dominated by the
893component of the slant-from-figure shape likelihood
894function derived from the circle prior to the component
895derived from the random ellipse prior.

896Comparisons with other approaches to robust
897cue integration

898Landy et al. (1995) were the first to formally connect
899the problem of integrating depth cues to statistical
900approaches to robust estimation. They did not propose a
901specific model for robustly integrating discrepant depth
902cues, but they did suggest that methods from robust
903statistics should be applied. By and large, these methods
904apply to problems somewhat different in kind from the
905cue integration problem. Specifically, they deal with
906problems in which many data points are available to
907estimate some parameter. The methods are nonlinear
908techniques that either determine outlier points to discard
909from analysis or adjust how points are weighted to
910estimate a parameter (Wonnacott & Wonnacott, 1990).
911On the face of it, these methods appear like they would be
912applicable to cue integration; however, they rely on
913having a large number of data points available. Consider
914the example of the trimmed mean technique for estimating
915a population mean (Wonnacott & Wonnacott, 1990). This
916method excludes some percentage (e.g., 5%) of the points
917in the two tails of the data histogram before calculating a
918standard sample average to estimate the mean. By
919analogy, this would suggest a strategy whereby the visual
920system vetoes a cue when it disagrees by a large amount
921from another set of cues.
922The problem with the analogy is that the trimmed mean
923technique is only effective when a sizable number of
924samples are available. In vision, the number of available
925cues is relatively small (perhaps two to six). The methods
926do not easily apply to a situation like the one described here

Slant
Proportion of

ellipses (:ellipse)

Standard deviation of
aspect ratios in the
ellipse model (A!)

Standard deviation of
aspect ratio

measurements (AA)

Bias in visual
estimates of

slant-from-stereot1.1

35- 0.124 (T0.037) 0.127 (T0.0085) 0.024 (T0.0086) j0.489 (T0.4511)t1.2

55- 0.039 (T0.025) 0.104 (T0.011) 0.036 (T0.0048) j3.49 (T1.07)t1.3

Figure 10. Expected compression cue weights for the best fitting
models for (A) Experiment 1 and (B) Experiment 2 (solid curves)
plotted along with subjects’ average compression cue weights in
the two experiments. The expected model weights were com-
puted using the same analysis applied to subjects’ dataVfirst
removing estimator bias (due to the slant-from-stereopsis bias
term) from slant estimates using a quadratic fit and then applying
Equation 8 to compute compression cue weights. Note the shift in
the peak for the model weights for Experiment 2. Error bars are
the standard errors of the mean weights computed across
subjects.

Table 1. Best fitting model parameters for Experiment 1 and 2. Standard errors in parentheses were derived from the Hessian of the log-
likelihood function for the model fits.
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927 in which only two cues are available; hence, we cannot
928 directly translate standard methods for robust statistical
929 estimation to the problem of visual cue integration. Because
930 of this, there are no extant models for robust visual cue
931 integration that are well specified enough to make quantifi-
932 ably testable predictions of human performance.
933 The alternative model that would seem to compete with
934 the Bayesian account is that the visual system vetoes or
935 down-weights one of a set of grossly discrepant cues. To
936 be tested experimentally, however, this proposal requires
937 a specification of a principled method for determining
938 which cue to veto or down-weightVand, in the latter case,
939 how to down-weight it. In the next two sections, we will
940 describe how both of these models can arise naturally as
941 implementations of an optimal Bayesian observer who
942 uses mixed priors to interpret a cue. The hard computa-
943 tional problem in such systems is determining how to
944 reweight cues or which cue to veto. The Bayesian model,
945 in this context, can be seen as characterizing the optimal
946 way to perform either of these functions. The cost
947 function that an estimator is designed to minimize will
948 determine whether the estimator behaves as a linear
949 integrator with graded reweighting of cues or as a system
950 that vetoes one or another cue as a function of cue
951 uncertainty and the size of cue conflict.

952Comparing Bayesian cue integration with reweighting

953When the likelihood functions for different cues and the
954prior density function are Gaussians or mixtures of
955Gaussians, a robust Bayesian estimator that uses the mean
956of the posterior density function as its estimate of a
957surface property can be expressed as a linear combination
958of individual estimates of that property. Rather than
959having a single estimate for each cue, however, the
960system linearly combines estimates derived using each
961of the prior models that can be used to interpret that cue.
962Figure 11 illustrates a linear system that effectively
963implements the optimal Bayesian estimator for the stereo-
964psis/figure shape integration problem under the approx-
965imation that the likelihood function for slant-from-figure
966shape is a mixture of Gaussians. It is a cascade of linear
967processes. In the first stage, the figure shape cue is
968interpreted by two different estimators, each of which
969relies on a different prior model for ellipses in the
970worldVthat all ellipses are circles or that ellipses are
971drawn from a random ensemble of ellipses. These
972estimates are linearly combined with the estimate of
973slant-from-stereopsis and the slant suggested by an
974observer’s prior model. The weights in this stage of cue
975combination are specified in the usual way for linear
976combination; that is, they are in inverse proportion to the

Figure 11. When the likelihood functions associated with each of the prior models that can be used to interpret one cue are Gaussian, the
likelihood function for another cue is Gaussian, and the prior density function for the parameter being estimated is Gaussian, one can
model the optimal Bayesian estimator as a cascade of linear integrators. The integrators compute weighted sums of estimates derived
from each of three processesVan estimator that uses one of the prior models to interpret the first cue (here, we use the figure cue as an
example), an estimator that uses a different prior model to interpret the first cue, an estimator that uses the second cue (here, we use
stereopsis as an example), and a prior estimate of S (see text for discussion of the weights in each stage).
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977 variance of the associated likelihood functions (or of the
978 prior density function). In the second stage, the slant
979 estimates derived by integrating stereopsis with each of
980 the estimates derived from the figure’s shape are linearly
981 combined to derive a final estimate of slant. The weights
982 in the second stage are determined by several factorsVthe
983 probabilities of each of the prior models for Cue 1 being
984 true in the world, the heights of the joint likelihood
985 functions computed from combining Cue 2 with Cue 1
986 under each prior model, and the reliabilities of the
987 estimates derived from each estimator (the spread of the
988 associated likelihood functions).
989 To see this, we expand the posterior density function for
990 slant conditioned on figure shape and stereoscopic
991 information as a weighted sum of the posteriors derived
992 from the circle and random ellipse models of figures

p Sj!; d
Y� �

¼ p M ¼ circlej!; d
Y� �

pcircle Sj!; d
Y� �

þ p M ¼ ellipsej!; d
Y� �

pellipse Sj!; d
Y� �

;

ð14Þ

993994 where ! is the aspect ratio of the figure in the image and
995 d

Y
is a vector of disparities that represents the information

996 provided by stereopsis. The expected value (mean) of the
997 posterior density function is a weighted average of the
998 means of the posterior density functions derived form
999 each mode

S ¼ E Sj!; d
Yh i

¼ p M ¼ circlej!; d
Y� �

Scircle

þ p M ¼ ellipsej!; d
Y� �

Sellipse; ð15Þ

10001001 where Scircle is the mean of the posterior density function
1002 derived from the circle model of figures and Sellipse is the
1003 mean of the posterior density function derived from the
1004 random ellipse model. When the likelihood functions and
1005 the prior density are Gaussian, these means are the
1006 weighted sums of slant estimates derived from the differ-
1007 ent cues and the prior as in the standard linear model of
1008 cue integration (Landy et al., 1995).

S ¼ E Sj!; d
Yh i

¼ p M ¼ circlej!; d
Y� �

� w
ðcircleÞ
figure S

circle
þ w

ðcircleÞ
stereo Sstereo þ w

ðcircleÞ
prior Sprior

� �

þ p M ¼ ellipsej!; d
Y� �

� w
ðellipseÞ
figure S

ellipse
þ w

ðellipseÞ
stereo Sstereo þ w

ðellipseÞ
prior Sprior

� �
;

ð16Þ

10091010where the weights are in inverse proportion to the
1011variances of the associated likelihoods and priors and the
1012weights within each term sum to 1. The weights in the first
1013term are given by

w
ðcircleÞ
figure ¼ 1=A2

circle

1=A2
circle þ 1=A2

stereo þ 1=A2
prior

w
ðcircleÞ
stereo ¼ 1=A2

stereo

1=A2
circle þ 1=A2

stereo þ 1=A2
prior

w
ðcircleÞ
prior ¼

1=A2
prior

1=A2
circle þ 1=A2

stereo þ 1=A2
prior

ð17Þ

10141015where Acircle
2 is the variance of the likelihood function for

1016slant-from-figure shape given that the figure in the world
1017is a circle, Astereo

2 is the variance of the likelihood function
1018for slant-from-stereopsis, and Aprior

2 is the variance of the
1019prior density function for slant. The weights in the second
1020term are similarly given by

w
ðellipseÞ
figure ¼

1=A2
ellipse

1=A2
ellipse þ 1=A2

stereo þ 1=A2
prior

w
ðellipseÞ
stereo ¼ 1=A2

stereo

1=A2
ellipse þ 1=A2

stereo þ 1=A2
prior

w
ðellipseÞ
prior ¼

1=A2
prior

1=A2
ellipse þ 1=A2

stereo þ 1=A2
prior

: ð18Þ

10211022The only difference between the weights in the two terms
1023is the replacement of Acircle

2 with Aellipse
2 , the variance of

1024the likelihood function for slant-from-figure shape given
1025that the figure in the world is taken form a random
1026ensemble of ellipses.
1027The weights in the second stage are given by the
1028posterior probability of each model for the figures given
1029all of the image data. These weights depend on many
1030factorsVthe variance of the likelihood functions associ-
1031ated with the figure cue and each prior model, the variance
1032of the stereoscopic cue, the conflict between the inter-
1033pretation suggested by the stereoscopic cues and the
1034interpretations suggested by the figure cue using each of
1035the two prior models, and the prior probabilities of the
1036figure being drawn from each model. These effects are
1037summarized below.

1038& Size of conflict: The probability of a particular model
1039given the image data decreases as the size if the
1040conflict between the estimate derived using that model
1041and the interpretations derived from other cues
1042increases. This effect depends on the size of the
1043conflict relative to the variances of the associated
1044likelihood functions. A less constrained prior model is
1045less affected by conflict size than a more constrained
1046prior model because the latter leads to a lower
1047variance likelihood function for interpreting a cue.
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1048 This is the reason why a Bayesian observer switches
1049 to a less constrained model at large cue conflicts.
1050 & Occam’s razor: The number of parameters that are free
1051 to vary in a model and thus that need to be
1052 marginalized over to calculate that model’s likelihood
1053 function determines in part the magnitude of the
1054 likelihood of the modeVthe greater the number of
1055 these parameters, the smaller the likelihood of the
1056 model. In this article’s example, the random ellipse
1057 model has one free parameterVthe figure’s aspect
1058 ratio, but in general, it has twoVaspect ratio and
1059 orientation. The circle model has no free parameters.
1060 This biases the Bayesian estimator toward the more
1061 constrained model, until the previous factor overcomes
1062 this effect. For other cues, for example, texture cues
1063 provided by images of lattice textures, the random
1064 texture model can have a large number of free
1065 parameters. When viewing a perspective image of a
1066 square lattice, the likelihood of the random texture
1067 model is extremely low because of this Occam’s razor
1068 effect, whereas the likelihood of the square lattice
1069 interpretation is highVassuming the prior probability
1070 of viewing a square lattice is not exceedingly low.
1071 & The prior probability of a model: This is a simple
1072 multiplicative factor that appears in the posterior
1073 probability for a model given the available image
1074 data. Higher probability models are more likely given
1075 the image data.

1076 Because the linear formulation can implement a robust
1077 Bayesian cue integrator in some situations, one way to
1078 view the Bayesian model is that it provides a rational way
1079 to determine the weights that one should assign cues as a
1080 function of the conflict between them. Calculating the
1081 weights, however, is a nontrivial computation. Moreover,
1082 taking this perspective on robust cue integration has two
1083 dangers. First, it only truly applies when the likelihood
1084 functions are Gaussian. Second, it obscures the conceptual
1085 power of the approach, which is to reconceptualize robust
1086 cue integration as parameter estimation in a more complex
1087 worldVone that has the type of categorical structure that
1088 exists in our environment.
1089

1090 Comparing Bayesian integration with cue vetoing

1091 The linear formulation of the optimal Bayesian integra-
1092 tor derives from assuming a particular cost function for
1093 specifying the optimal estimate; in particular, a mean-
1094 squared error cost function. This results in an optimal
1095 estimator that selects the mean of the posterior density
1096 function on the scene parameter being estimated. A MAP
1097 estimator (which picks as its estimate the most likely
1098 estimate the peak of the posterior density function), for
1099 example, cannot be exactly implemented by such a linear
1100 scheme. Both of these estimators assume that an observer
1101 implicitly considers only errors in one variable (e.g., slant)
1102 as contributing to the cost. An estimator that imposes a

1103large cost on determining the right model to use for
1104making its inference will behave quite differently. Such an
1105estimator can be thought of as estimating two variables (at
1106least) Va continuous object parameter like its slant and a
1107discrete parameter specifying the category within which
1108the object falls (e.g., circle vs. ellipse).
1109An observer who assumes a high cost for errors in the
1110categorical judgment and who enforces a constraint that
1111the categorical judgment and the continuous estimate be
1112consistent with one another will operate in two steps.
1113The observer will first determine the most likely model
1114to use for interpreting a cue and then use that model and
1115only that model when integrating the cue with other cues
1116to estimate the continuous variable. Using the example
1117of elliptical figures, such an observer will first calculate
1118the a posteriori most probable shape category for the
1119figure (circle or ellipse) and then use only the likelihood
1120function derived for that model when integrating the
1121figure shape cue with stereopsis. If the prior on figure
1122shape in the random ellipse model is very broad, such an
1123observer will appear to effectively veto the compression
1124cue at large cue conflicts, because in those stimulus
1125conditions, the random ellipse interpretation is more
1126likely than the circle interpretation and the broad prior
1127on the random ellipse model renders it useless as a slant
1128cue.
1129A cost function that gives rise to behavior somewhere
1130between the ‘‘linear-with-reweighting’’ scheme and pure
1131cue vetoing is a local mass cost function, in which the cost
1132of errors in an observer’s estimates grows with the square
1133of the error (as in the mean square error cost function) up
1134to a point, at which it remains fixed. When applied to a
1135simple problem like estimating the mean of a set of
1136sample data points, this cost function gives rise to an
1137estimator much like the trimmed mean referred to earlier.
1138The logic behind using this cost function to derive an
1139optimal estimator is that beyond some magnitude, all
1140errors are equally costly. Because large errors caused by
1141outliers are not penalized as heavily as they would be with
1142a quadratic cost function, estimators like this are robust to
1143outliers. In the context of cue integration, such a cost
1144function results in an estimator that is unaffected by the
1145tails of a likelihood function far away from its peak.
1146Because these tails are dominated by the less likely of the
1147different models that could be used to interpret a cue, an
1148estimator that uses such a cost function behaves in many
1149stimulus regimes as if it has vetoed those cues; that is, as
1150if it has selected one model to interpret a cue and ignored
1151the others. The behavior is not exactly equivalent to
1152vetoing, and such an estimator will still show a graded
1153transition between states in which one or another model is
1154dominant, but the transition will be sharper than with the
1155linear-with-reweighting model.
1156Which of these cost functions was implicitly used by
1157observers in the experiment described here is difficult to
1158determine. As noted earlier, trial-by-trial variation in the
1159decision whether or not to veto the compression cue
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1160 would certainly lead to what appears as a smooth
1161 transition to lower cue weights at large cue conflicts, as
1162 seen here. However, one would expect a system that
1163 employed a discrete process of cue vetoing, even were the
1164 data smoothed by trial-to-trial and subject-to-subject
1165 variance, to have compression cue weights that monotoni-
1166 cally decreased to zero as a function of the magnitude of
1167 cue conflict. Subjects’ weights, however, asymptoted at a
1168 nonzero value at large positive cue conflicts. In Bayesian
1169 terms, observers behaved at extreme conflicts as if they
1170 had switched models for interpreting the figure shape cue
1171 to a less constrained model of figure shape, but the
1172 unconstrained model is still constrained enough that
1173 observers gave some weight to the compression cue when
1174 operating in ‘‘random ellipse’’ mode.1175

1176

1177 Interpretation of the model

1178 As the previous discussion suggests, the Bayesian
1179 model for robust cue integration and either the cue
1180 reweighting or cue vetoing models should not properly
1181 be considered competing models. Rather, the models are
1182 targeted at different levels of explanation of the problem.
1183 To use Marr’s (1982) terminology, the cue reweighting
1184 and cue vetoing models would be, were they fleshed out to
1185 detail the mechanisms that determine cue weights or to
1186 decide which cue to veto, models of the algorithm used by
1187 the visual system to integrate cues. This is true even if
1188 these mechanisms do not exactly implement the Bayesian
1189 calculations needed to optimally reweight or veto cues,
1190 but rather implement some heuristics that approximate
1191 optimal performance. The Bayesian model itself is a
1192 computational model of human performance. It provides
1193 an explanation of performance in terms of the computa-
1194 tions that are effectively implemented by the system. It
1195 does so by modeling human behavior as if they were
1196 optimal observers in a particular world. This world is
1197 defined primarily by two sets of parametersVthose
1198 characterizing low-level visual noise associated with each
1199 of several cues and those describing the statistical
1200 structure of the world.
1201 In the case of integrating the shapes of retinal ellipses
1202 with stereoscopic information about surface slant, the
1203 sensory noise parameter that was left free to vary when
1204 fitting the model was the noise on measurements of ellipse
1205 aspect ratio. The model parameters estimated for subjects’
1206 data accord well with published data on human subjects’
1207 ability to discriminate the aspect ratios of ellipses in the
1208 image plane. These data suggest an effective standard
1209 deviation between 0.02 and 0.04 in subjects’ estimates of
1210 aspect ratio (Regan & Hamstra, 1992). The model
1211 parameters fit to subjects’ data were within this range
1212 (0.024 and 0.036 in Experiments 1 and 2, respectively).
1213 Even considering only the small conflict conditions, in
1214 which the parameters for the prior density on aspect ratios
1215 do not interact strongly with the sensory noise estimates,

1216this suggests that subjects are near optimal in how they
1217integrate the compression cue with stereopsis.
1218The prior model parameters fit to the data from each
1219experiment further suggest that subjects were behaving as
1220if in a very regular world. The proportion of random
1221ellipses is small and the standard deviation of ellipses
1222among the random ellipse set is also apparently small.
1223Figure 12 illustrates the fitted prior distributions on aspect
1224ratios in the random ellipse category. Below the graph are
1225drawn ellipses with aspect ratios at the 95% bounds on
1226aspect ratios derived from Experiment 1. It is notable,
1227however, that although the range 0.75–1.333 seems small
1228numerically, it appears much larger visually, when
1229comparing the perceived shapes of the corresponding
1230ellipses. Moreover, the small proportion of circles in the
1231model that was fit to the data is enough to give rise to
1232apparent down-weighting of the compression cue at large
1233cue conflicts with stereopsis.
1234

1235The effects of different perceptual factors on
1236nonlinear cue integration behavior

1237As is traditionally done, we have quantified subjects’
1238cue integration behavior using linear weights calculated
1239by regressing subjects’ slant settings against the slants
1240suggested by each of a pair of cues. In the context of the
1241nonlinear Bayesian model, however, it should be clear that
1242this is strictly a means of quantifying subjects’ average
1243behavior. Because the weights are linear functions of
1244subjects’ corrected slant settings (eliminating quadratic
1245biases between physical slant and subjects’ slant settings),
1246we could have as easily fit the model parameters to
1247subjects’ corrected slant settings. Calculating cue weights

Figure 12. The probability density functions on aspect ratio for the
‘‘random ellipse’’ component of the mixed prior on figure shape,
as fit to the data for the two experiments.

Journal of Vision (2007) 0(0):1, 1–24 Knill 18



1248 has the advantage of providing a picture of the relative
1249 importance of the cues to subjects’ judgments; however,
1250 they should not be thought of as characterizing a model of
1251 the mechanism that implements cue integration.
1252 Looking at how the ideal observers’ cue weights change
1253 as a function of the model parameters also provides
1254 insight into the functional role of distinct parts of the
1255 perceptual system, particularly sensory noise and prior
1256 assumptions. Figure 13 shows how the model behaves for
1257 a number of variations on model parameters (holding the
1258 others fixed) for the 35- slant condition used in Experi-
1259 ment 1. Not surprisingly, changing the standard deviation
1260 of subjects’ sensory estimates of aspect ratio in the retinal
1261 image has the effect of decreasing the weight that the
1262 model gives to the compression cue. This change is
1263 localized to the small cue-conflict conditions, because in
1264 these conditions, the circle model dominates subjects’
1265 estimates of slant from the figural cue, so that the primary
1266 source of uncertainty is in the sensory noise on aspect
1267 ratio measurements. At large cue conflicts, the effect of
1268 changing the sensory noise is negligible, because the
1269 random ellipse model dominates judgments and the
1270 sensory noise is small relative to the uncertainty in
1271 the prior distribution of aspect ratios in the world.
1272 Changing the proportion of random ellipses assumed to
1273 be in the environment has a very similar effect on the
1274 weight function. Because the total likelihood function for
1275 the figure shape cue is an average of the likelihood
1276 functions for circles and random ellipses, weighted by the
1277 relative proportions of the two types of figures, the
1278 effective weight of the compression cue depends on that
1279 proportion. This effect is apparent at small cue conflicts
1280 but not at larger conflicts. This is because the random
1281 ellipse model has a prior peaked at ! = 1, as does the
1282 circle model. At large cue conflicts, the tails of likelihood
1283 function for the random ellipse model are proportionally
1284 so much larger than the tails of the likelihood function for
1285 the circle model that the random ellipse model over-
1286 whelms the circle model when stereoscopic cues conflict
1287 by a great deal with the circle interpretation of slant, even
1288 when the proportion of circles in the environment is high.
1289 Finally, changing the standard deviation of the random
1290 ellipse model has a somewhat complicated effect on

1291performanceVit lowers the compression cue weights at
1292large cue conflicts but slightly raises compression cue
1293weights at small conflicts.
1294Particularly interesting in these data are the effects of
1295the two different parts of the prior model on subjects’

Figure 13. The effects of different model parameters on perfor-
mance. In all cases, we have fixed all but one of the model
parameters to those fit to subjects’ data in Experiment 1, in which
stereoscopic cues indicated a 35- slant. Different parameters
(indicated in the legends) were varied for the simulations
represented in the three graphs. The three graphs show perfor-
mance for (A) different levels of sensory estimates of aspect ratio,
represented as the standard deviation in aspect ratio measure-
ments; (B) different proportions of random ellipses/circles in the
world; and (C) different standard deviations on the range of ellipse
aspect ratios included in the random ellipse category.
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1296 performance. First, increasing the proportion of random
1297 ellipses in the prior model shrinks the apparent weight of
1298 the compression cue at low cue-conflict levels. This
1299 derives from the fact that the likelihood function for
1300 slant-from-figure shape is a mixture of the functions
1301 derived for circles and random ellipses. Both priors are
1302 peaked at aspect ratios = 1 (circles) but have different
1303 spreads. Thus, both induce a bias toward a circle
1304 interpretation. When combined with the likelihood func-
1305 tion from stereo disparities, the result is a combined
1306 likelihood function that is skewed toward the stereo slant
1307 interpretation (see Figure 2). The degree of skew depends
1308 on the weighting of the two component functions that
1309 make up the slant-from-figure shape likelihood. The
1310 skew shifts the expected value of slant derived from
1311 the joint cue likelihood function toward the peak of the
1312 slant-from-stereo likelihood.
1313 The effect of the spread of ellipse aspect ratios in the
1314 random ellipse model is more complicated and less
1315 intuitive. That the compression cue weights at large cue
1316 conflicts shrink with increasing spread of this distribution
1317 simply reflects the fact that performance at large cue
1318 conflicts is dominated by the random ellipse model, which
1319 is less reliable when the ellipse category contains a
1320 broader range of shapes. The slight increase in compres-
1321 sion cue weight at low conflicts derives from a more
1322 subtle behavior of the likelihood functions derived for
1323 different models. While the increased spread of the
1324 component likelihood function associated with the random
1325 ellipse category will tend to reduce the weight of the
1326 compression cue at small conflicts, the relative contribu-
1327 tion of this component to overall performance depends on
1328 the absolute height of the function. This decreases with
1329 increasing spread of the prior on aspect ratios, which tends
1330 to down-weight its contribution to performance at low
1331 conflict conditions. The overall pattern is the result of this
1332 trade-off.

1333

1334 Is the prior on figure shape really categorical?

1335 We have presented the categorical nature of the prior
1336 model as its critical featureVthe one that drives robust
1337 performance at large cue conflicts. Mathematically, how-
1338 ever, the behavior of the model fundamentally derives
1339 from the long tails of the prior distribution on aspect
1340 ratiosVtails that do not go to zero as fast as a Gaussian. It
1341 is worth asking, therefore, how useful the mixture model
1342 is for characterizing human perceptual performance. The
1343 first answer to this question is empirical. The large
1344 weights that subjects give to the compression cue at
1345 small cue conflicts suggest a very strong peak in the
1346 prior density function at 1. If we assume that subjects
1347 behave near-optimally, we can assume that this weight is
1348 largely determined by the relative spreads of the slant-
1349 from-stereopsis and slant-from-figure shape likelihood

1350functions near their peaks. We have fixed the spread on
1351the slant-from-stereopsis likelihood function based on
1352previous psychophysical data. The spread of the slant-
1353from-figure shape likelihood function is a function of the
1354spread in the prior near 1 and the sensory noise on aspect
1355ratio measurements. As noted above, the sensory noise
1356levels fit to the data are very near those estimated from
1357psychophysical experiments on aspect ratio discrimination
1358(Regan & Hamstra, 1992). This leaves little room for
1359uncertainty induced by spread in the prior distribution on
1360aspect ratios.
1361The second argument for a mixture model is largely
1362conceptual. It seems appropriate for many of the prior
1363models that we use to characterize objects in the world.
1364Circles are ‘‘special’’ in our environment. Similarly,
1365symmetry is ubiquitous in both artifactual and natural
1366environments. Most objects are rigid (not simply biased
1367toward being rigid). The list can go on. Furthermore, it
1368matches our phenomenal experience. As one example of
1369this, subjects who have participated in experiments like
1370the one described here, in which we ran subjects 1 day
1371using all circle stimuli or stimuli with small cue conflicts
1372and then on another day used randomly shaped ellipses,
1373spontaneously commented on the second day that we had
1374changed the stimuli from all circles to circles combined
1375with ellipses. Finally, mixture models with modal priors
1376provide a natural constraint on constructing model priors
1377with tight peaks and long tails.

1378

1379Generalizations of the model

1380The Bayesian model presented here is a special case of
1381hierarchical Bayesian inference (Tenenbaum, Griffiths, &
1382Kemp, 2006). Here, we have only considered one aspect
1383of the generative model that gives rise to the image data
1384associated with sensory cuesVthe different prior models
1385that might be applied to interpret a cue. This can be
1386thought of as a discrete variable on which the likelihood
1387function for the cue depends. Hierarchical Bayesian
1388inference models can be applied to a wider range of
1389nonlinear cue integration behavior. We describe a few of
1390these generalizations here.

1391Multisensory integration

1392The problem of how the brain integrates information
1393from multiple sensory modalities to infer the properties of
1394objects (position, size, etc.) has recently garnered much
1395attention in the psychophysics literature. Like earlier
1396research on visual depth cue integration, this work has
1397focused on the question of whether or not the brain
1398combines multimodal information in a statistically
1399optimal way when operating in a linear regime (it does;
1400Alais & Burr, 2004; Battaglia, Jacobs, & Aslin, 2003;
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1401 Ernst & Banks, 2002). One might well ask how an
1402 observer should behave when faced with large conflicts
1403 between modalities, for example, when the direction of a
1404 sound signaled by audition is very different from the
1405 direction signaled by vision. The notion that different priors
1406 might be used to interpret one cue or another does not seem
1407 applicable in this situation. A very similar observation,
1408 however, does, that is, that the auditory and visual signals
1409 could arise from the same or different physical sources.
1410 Formulating the idea that sensory signals from different
1411 modalities could arise from the same or different causal
1412 events in the world in a Bayesian framework leads to
1413 essentially the same model presented hereVa mixture of
1414 different models that could have generated the sensory data.
1415 Kording et al. (2007) have shown that this model can
1416 explain a range of nonlinear data in subjective judgments
1417 of auditory and visual source localization when the two
1418 signals are presented simultaneously.
1419

1420 Multiple sources of noise

1421 The model that we applied to explain figural and
1422 stereoscopic cue integration assumes a special place for
1423 stereopsis, namely, that its likelihood is localized in the
1424 slant domain. This predicts that in the presence of large
1425 cue conflicts between stereopsis and monocular depth cues
1426 that rely on mixtures of priors, stereoscopic information
1427 will dominate in the sense that it will lead to a switch in
1428 the interpretation of the monocular cues. In special
1429 situations, an observer can attribute different causal events
1430 to the stereoscopic cues and the monocular cues. This is
1431 what happens when viewing a picture. The pictorial cues
1432 in a picture are attributed to the 3D layout of the scene
1433 rendered in the picture, whereas the stereoscopic cues are
1434 attributed to the paper on a scene that is rendered. This
1435 may also apply to our percepts of stereographic displays
1436 presented on a computer monitor and almost certainly
1437 does when care is not taken to eliminate many of the cues
1438 indicating that a display is flat. In the real world, such
1439 explanations of large cue conflicts are difficult to
1440 conceive. It remains possible, however, that the stereo-
1441 scopic system is corrupted by qualitatively different noise
1442 sources that lead to different likelihood functions for depth
1443 or shape from disparity. Landy et al. (1995) acknowledge
1444 this as a motivating factor for robust integration schemes
1445 by noting that stereoscopic noise can be ‘‘local’’, as in
1446 simple Gaussian noise on disparity measures, or more
1447 global, as in noise caused by mismatches in the solution of
1448 the correspondence problem.
1449 It is conceivable that for some stimuli, monocular cues
1450 can serve to down-weight stereoscopic cues in a rational
1451 way. For example, a perspective image of a slanted,
1452 square grid provides very reliable evidence that the texture
1453 is, in fact, a slanted square grid. The likelihood for a
1454 nonsquare interpretation of the grid is considerably lower
1455 than that for the square grid because of the Occam’s razor
1456 effect alluded to previouslyVa form of the generic view

1457argument for why we see perspective images of regular
1458patterns so reliably rather than frontal views of irregular
1459patterns that happen to mimic perspective. Such patterns
1460would be highly accidental if drawn from an ensemble of
1461random patterns. When the unconstrained interpretation of
1462a monocular cue has a likelihood that is low enough, it
1463could be lower than the likelihood that the noise in the
1464stereoscopic system comes from an outlier process,
1465leading to apparent down-weighting of the stereoscopic
1466cue or even bimodal perceptual effects like those
1467described by van Ee, Adams, and Mamassian (2003) for
1468these types of stimuli.
1469

1470Adaptation and recalibration

1471One way in which the brain can resolve large conflicts
1472between cues from different modalities is to recalibrate
1473how it interprets one of the cues. This happens when the
1474conflicts maintain a particular size or sign over time, as in
1475prism adaptation. The Bayesian account of this type of fast
1476adaptation is that the calibration parameters (e.g., the gain
1477between vergence angle and depth) can change over time
1478due to a mixture of possible causesVslow drifts over time
1479and catastrophic, sudden changes due to disease or injury.
1480Smith, Ghazizadeh, and Shadmehr (2006) have applied
1481this notion to model visuomotor adaptation and recovery
1482from adaptation. They have modeled these effects as
1483resulting from a Bayesian recalibration scheme that
1484assumes that a mixture of processes could have caused
1485the system’s calibration parameters (the mapping between
1486visual location and movement amplitude) to drift over
1487different timescales. Similar ideas could be applied to
1488adaptation processes that affect depth perception such as
1489adaptation of the vergence signal used to calibrate depth-
1490from-disparity estimates or the vestibular signal used to
1491calibrate depth-from-motion parallax.

1492
1493

1494

1495
1496Conclusion

1497Subjects appeared to spontaneously down-weight the
1498information about surface slant provided by figure shape
1499relative to stereoscopic cues as the conflict between the
1500cues grew. Their behavior was well fit by a Bayesian
1501model that assumes a mixed prior on figure shapes that
1502include categories for circles and random ellipses.
1503Similar models apply to most other monocular depth
1504cues, which rely on some form of strong prior con-
1505straints on objects in the world because those constraints
1506do not apply to all objects. Understanding the particular
1507patterns of nonlinear cue integration exhibited by differ-
1508ent combinations of cues will require fully modeling
1509these priors and how they combine with sensory noise to
1510constrain the information provided by the cues. The
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1511 Bayesian framework described here provides a powerful
1512 tool for building parametric, predictive models of non-
1513 linear cue integration performance.

1514
1515 Appendix A

1516 We assume that for each trial, an observer estimates
1517 slant from a noisy measurement of the aspect ratio of the
1518 ellipse in the retinal image and noisy measurements of
1519 disparity. Rather than model the slant-from-disparity
1520 explicitly, we simplify it by representing the information
1521 provided by disparities as an estimate of slant corrupted
1522 by Gaussian noise. The Bayesian observer, therefore,
1523 computes a posterior probability density function on
1524 surface slant conditioned on these two measurements.
1525 For a particular combination of noisy measurements, A
1526 and Sˆ stereo, the posterior distribution is given by the
1527 product of likelihood functions associated with the two
1528 measurements and a prior on surface slant,

p SjA; Ŝstereo
� �

¼ p AjSð Þp ŜstereojS
� �

p Sð Þ: ðA1Þ

15291530 Using Equation 10 for p(AªS) and assuming that surfaces
1531 are viewed from a uniform distribution on the view
1532 sphere, Equation A1 becomes

p SjA; Sˆ stereo
� �

¼ 1ffiffiffiffiffiffi
2:

p
AA

�
:circle exp j AjcosðSÞð Þ2=2A2

A

h i
þ

:ellipse

Z V

0

exp j Aj! cosðSÞð Þ2=2A2
A

h i
pellipse !ð Þd!

8>><
>>:

9>>=
>>;

� exp jSˆ
2

stereo=2A
2
stereo

h i
sin Sð Þ; ðA2Þ

15331534 where AA is the standard deviation of the noise on
1535 measurements of aspect ratio in the image and Astereo is
1536 the standard deviation of the noise on slant-from-disparity
1537 measurements. This term allows us to model relative
1538 biases in subjects’ estimates of slant-from-stereo and
1539 slant-from-figure shape. The first likelihood function in
1540 Equation A2 is a mixture of a likelihood function
1541 computed with the assumption that a figure is a circle
1542 and a likelihood function computed with the assumption
1543 that a figure is a randomly shaped ellipse with an aspect
1544 ratio drawn from the distribution pellipse(!). As described
1545 in the text, we model this as a log-Gaussian distribution,

p !ð Þ ¼ 1

!

1ffiffiffiffiffiffi
2:

p
A!

exp j log !ð Þ2=2A2
!

h i
: ðA3Þ

15461547

1548 We assume that on each trial, the observer sees an
1549 aspect ratio A that is a random sample from a Gaussian

1550distribution with mean, !stimuluscos(Sstimulus), and standard
1551deviation, AA, and an estimate of slant-from-disparity that
1552is a random sample from a Gaussian distribution with
1553mean, Sstimulus + bias, and standard deviation, Astereo. The
1554bias term allows us to incorporate into the model potential
1555relative biases in subjects’ estimates of slant-from-figure
1556shape and slant-from-disparity. The Bayesian observer
1557computes as its estimate of the slant the expected value of
1558the posterior distribution,

Ŝ ¼ E SjA; Ŝstereo
� 	

¼
Z :=2

0

S p SjA; Ŝstereo
� �

dS: ðA4Þ

15591560This choice of estimator minimizes the squared error of an
1561observer’s estimates. We have simulated estimators that
1562use other criteria, for example, a MAP estimator that
1563selects as its slant estimate the peak of the posterior
1564density function. Simulation results were very similar
1565using the different estimators.
1566The free parameters in the model are AA, Astereo, A!

1567(which parameterizes the spread of pellipse(!)Vsee Equa-
1568tion 7), and the relative slant bias. To fit the model to
1569subjects’ data, for candidate settings of the model’s
1570parameters, we applied the same analysis used to analyze
1571subjects’ data to the outputs of the model observer
1572averaged over many noise samples of aspect ratio and
1573slant-from-disparity for each stimulus condition. For each
1574stimulus condition, represented as a combination of figure
1575aspect ratio in the world !i and slant Si, we computed the
1576expected slant estimate for the model over many trials as
1577the integral of p(SªA, Ŝstereo) over all possible noisy values
1578of A and Ŝstereo for that condition,

E Ŝj!i; Si
� 	

¼ k

Z :=2

0

Z V

0

Z :=2

0

S p SjA; Ŝstereo
� �

� exp j Aj !icos Sið Þð Þ2=2A2
A

h i

� exp j Sˆ stereoj Si þ biasð Þ
� �2

=2A2
A


 �
dSdAdSˆ

stereo
;

ðA5Þ

15791580where k is a normalizing constant that guarantees that the
1581exponential distributions for sensory noise inside the
1582integral integrate to 1 (because the range of integration
1583is bounded on at least one side, the noise distributions are
1584not, strictly speaking, Gaussian, although the bounds are
1585many standard deviations away form the means).
1586The goodness of fit of the model to subjects’ data was
1587computed in two steps. First, we applied the same
1588quadratic regression on the expected slant estimates for
1589cue-consistent stimuli as we applied to subjects to remove
1590the bias caused by the bias term in the model. We then
1591computed the expected slant estimates for the test
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1592 conditions in the experiment, corrected them using the
1593 quadratic fit to remove the bias created by the biased
1594 slant-from-stereo estimate, and used the corrected slant
1595 estimates to compute compression cue weights for each of
1596 the test conditions (see Equation 4). Second, we computed
1597 a #2 statistic from the difference between the models’
1598 expected compression cue weights and the average of
1599 subjects’ weights in each of the test conditions,

#2 ¼
XN
i ¼ 1

wmodel
i j wsubjects

i

� �2

A2
i

; ðA6Þ

16001601 where N is the number of test conditions and Ai is the
1602 standard error on the mean of subjects’ compression cue
1603 weights in condition i. We fit the model parameters by
1604 minimizing Equation A6 using a simplex algorithm.
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