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Orientation disparity, the difference in orientation that results when a
texture element on a slanted surface is projected to the two eyes, has been
proposed as a binocular cue for 3D orientation. Since orientation dispar-
ity is confounded with position disparity, neither behavioral nor neuro-
physiological experiments have successfully isolated its contribution to
slant estimates or established whether the visual system uses it. Using a
modified disparity energy model, we simulated a population of binocu-
lar visual cortical neurons tuned to orientation disparity and measured
the amount of Fisher information contained in the activity patterns. We
evaluated the potential contribution of orientation disparity to 3D orien-
tation estimation and delimited the stimulus conditions under which itis
areliable cue. Our results suggest that orientation disparity is an efficient
source of information about 3D orientation and that it is plausible that the
visual system could have mechanisms that are sensitive to it. Although
orientation disparity is neither necessary nor sufficient for estimating
slant, it appears that it could be useful when combined with estimates
from position disparity gradients and monocular perspective cues.

1 Introduction

Whether placing an object on a table or walking up a hill, humans rely on
binocular information to estimate the orientations of surfaces so they can
interact with and navigate through the environment. Binocular cues, which
arise from the slight differences in the views from the two eyes, are impor-
tant for estimating three-dimensional (3D) surface orientation, and there
are multiple aspects of binocular input that could be useful for producing
these estimates. The first, position disparity, is the difference in the retinal
positions at which corresponding image features appear in the two eyes
(this is what people typically imagine when they think about binocular
disparity). Position disparity provides information about depth, and the
gradient of position disparity across a surface provides information about
its 3D orientation. Orientation disparity, the difference in the orientations
at which a texture element on a slanted surface appears when projected to
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Figure 1: Binocular views of a line on a slanted surface as projected to each eye
for (A) a frontoparallel surface and slanted surfaces with the line (B) perpen-
dicular to the axis of rotation and (C) parallel to the axis of rotation. Surface B
is the only surface of the three with nonzero orientation disparity.

both eyes, has been proposed as an additional binocular cue that may be
useful for estimating 3D orientation. When viewing a frontoparallel surface
containing a single vertical line, the projected line appears vertical to both
eyes. However, if the surface is rotated away from the viewer about its
horizontal axis so that the top edge is farther away than the bottom edge,
the line will appear to rotate counterclockwise in the left eye and clockwise
in the right eye. The orientations at which the line appears when projected
to each eye change as a function of slant, and the difference between these
orientations is orientation disparity (see Figure 1). In general, the mapping
between the images projected to the two eyes is an affine transformation
(Koenderink & van Doorn, 1976), and the orientation differences reflect one
component of this deformation.

There is disagreement in the literature about whether the visual system
has mechanisms that are tuned to orientation disparity. The reason this has
been so difficult to resolve is that orientation disparity and position dispar-
ity are confounded (Bridge & Cumming, 2001). von der Heydt, Hanny, and
Diirsteler (1981) claimed that uncorrelated dichoptic stimuli with consistent
orientation disparity information induced the percept of slant; they used
this to argue in favor of orientation disparity being an independent slant cue
and that effects due to orientation disparity and position disparity gradients
could be separated. However, these data have never been published in a
peer-reviewed journal, and to our knowledge, the effect has not been repli-
cated. Psychophysical studies of orientation disparity have had conflicting
interpretations (Gillam & Rogers, 1991; Gillam & Ryan, 1992; Cagenello
& Rogers, 1993; Heeley, Scott-Brown, Reid, & Maitland, 2003). In general,
these studies have found evidence that humans can perceive slant from
binocular images related by geometric distortions that are consistent with
orientation disparity and that sensitivity to slanted surfaces depends on the
orientations of the texture elements. However, the stimuli in these exper-
iments also contained position disparity information and often monocular
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perspective information. Also, they primarily tested at only very low slants,
where orientation disparities are smallest and vary the least across different
slants. Heeley et al. (2003) tested slant thresholds using bandpass stimuli
with varying orientation bandwidths and found that performance for
stimuli with 180 degree bandwidths was no worse than for narrower band-
widths. They claimed that since stimuli that are broadband in orientation
lack a clear directional structure, slant estimates from these stimuli must
have been based entirely on position disparity. However, as we will show,
because these stimuli have orientation content that is correlated between
the left and right retinal images, they produce orientation disparities when
slanted.

Two additional psychophysical studies found indirect evidence that
pointed toward orientation disparity being a useful binocular cue. Ninio
(1985) created stereograms with slight biases added to the position dis-
parities and orientation disparities at the tips of small slanted needles
in an attempt to dissociate position and orientation disparity and found
that slant percepts were stronger when orientation disparity was consis-
tent with the slant. Adams and Mamassian (2002) attempted to manipu-
late the responses of monocular orientation-dependent mechanisms that
would support binocular mechanisms tuned to orientation disparity by
having subjects adapt to Gabor patterns in each eye that were oriented
+6 degrees apart. The adaptation produced significant decreases in slant
perception, which suggested that monocular orientation sensitivity is a ba-
sis for slant perception, but it is also possible that other mechanisms for
slant also adapted. Blakemore, Fiorentini, and Maffei (1972) found neurons
in the cat striate cortex that responded well to binocular stimulation using
small differences in the orientation of a line presented to both eyes and
concluded that orientation disparity was a binocular mechanism. Bridge
and Cumming (2001) performed a physiological study of macaque V1 in
which they also found binocular neurons that appeared to be sensitive to
orientation disparity, but they claimed that this resulted from offsets be-
tween the stimuli and the receptive fields of these cells. It has also been
impossible to disambiguate whether the computations by parietal neurons
tuned to 3D orientation are based on position disparity gradients or orien-
tation disparity (Taira, Tsutsui, Jiang, Yara, & Sakata, 2000). Consequently,
whether the visual system has mechanisms for 3D orientation that are tuned
to orientation disparity remains an open question.

Most computational models of disparity detection have dealt only with
position disparity: the difference in the retinal positions at which corre-
sponding features appear in binocular image pairs (Ohzawa, DeAngelis,
& Freeman, 1990; Lippert & Wagner, 2002; Read, 2002; Chen & Qian, 2004).
Typically surface curvature and slant have been derived from approxi-
mating surfaces with small frontoparallel patches and computing position
disparity gradients, a method that seems consistent with physiological
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and behavioral measures (Nienborg, Bridge, Parker, & Cumming, 2004).
Most models have not accounted for local distortions like rotation and
compression (Koenderink & van Doorn, 1976). An exception to this is
Jones and Malik (1992), in which the authors used a set of linear filters
tuned to different orientations and scales to estimate surface slant from
orientation disparity, but their algorithm was not limited by biological
constraints.

We simulated the activity of a population of visual cortical cells tuned to
orientation disparity in response to textured surfaces presented at different
3D orientations and analyzed the output to quantify the amount of Fisher
information present as a function of slant, local orientation content, and
axis of rotation. Our primary question was whether orientation disparity
provides sufficient information about surface slant for the visual system
to have mechanisms that are sensitive to it or whether there is too little
information present for it to be an efficient cue. While this did not address
whether humans use orientation disparity, which is difficult due to con-
founds between position disparity and orientation disparity, it allowed us
to sketch out the range of slants at which orientation disparity might be
useful based on the information it provides.

One way to evaluate the performance of our model is to compare it with
humans’ measured slant thresholds. If the model performs similarly to hu-
mans, then this would suggest that orientation disparity could be a useful
cue for 3D orientation. However, very few studies have examined how well
humans can discriminate slant from binocular disparity. Knill and Saunders
(2003) reported that binocular 75% slant thresholds decreased from around
15 degrees near frontoparallel to 10 degrees for targets slanted at 40 de-
grees and to about 6.5 degrees for targets slanted at 70 degrees. These were
probably overestimates since Greenwald and Knill (2009) found that mean
84% binocular slant thresholds around a base slant of 35 degrees were less
than 5 degrees. Hillis, Watt, Landy, and Banks (2004) also found that one
author’s estimated thresholds decreased with increasing slant when stim-
uli were slanted about the vertical axis. Their slant thresholds for surfaces
within 45 degrees of frontoparallel were within the 5 to 10 degree range at
a viewing distance similar to what we used. There are several reasons that
psychophysical measurements of slant estimation are not ideal benchmarks
for the performance of our theoretical model. First, stimulus properties such
as size can have an impact on thresholds, and the image patches presented
to our model as input subtended about 1.2 degrees of visual angle. Larger
stimuli allow spatial integration, which can reduce uncertainty. A more sig-
nificant concern is that great care is typically taken to eliminate perspective
cues when measuring binocular slant thresholds (e.g., using random dot
stimuli), and orientation disparity is a binocular cue that depends on per-
spective distortions. Nevertheless, these studies provide at least ballpark
estimates for how much information orientation disparity would need to
contribute to be an effective cue.
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2 Properties and Limitations of Orientation Disparity

To what extent and for which slants is orientation disparity theoretically
useful? If orientation disparity is an effective cue for 3D orientation, its val-
ues should follow a broad distribution in natural, everyday scenes and vary
across different slants at levels that are within the human visual system'’s
ability to resolve the differences. We describe how the geometric proper-
ties of the scene and local texture properties influence orientation disparity,
review published estimates of human orientation acuity, consider how the
disparity gradient limit might impose bounds on the slants at which orien-
tation disparity could be useful, and estimate the distribution of orientation
disparity in natural environments.

The magnitude of orientation disparity depends on the geometry speci-
fied by the viewing distance, the interpupillary distance, and the slant, tilt,
and spin of the surface being viewed. Slant is the angle between the surface
normal and the line of sight and specifies the rotation about the tilt axis. An
object with 0 degrees of slant would be frontoparallel relative to the viewer.
Tilt determines the axis about which the surface is slanted, and it is the an-
gle between the projection of the surface normal into the image plane and
a fixed vector lying in the surface plane (Witkin, 1981; Stevens, 1983). By
convention, a surface with a tilt of 0 degrees rotates counterclockwise about
the vertical axis when slanted. Finally, spin specifies the rotation of the sur-
face about its normal; a horizontal grating would have a spin of 0 degrees,
and a vertical grating would have a spin of 90 degrees. Since lines oriented
180 degrees apart are identical, orientation disparity ranges only between
—90 degrees and 90 degrees, and values wrap around to the other side once
they exceed this range. The equation for orientation disparity (OD) is

OD = tan-! Cos @ sinz(%) sin 27 —sin @(cos? T +cos a sin? T)
=tan - - - -
cos(7 —¢) sin 5 sin @ —cos 5 (cos & cos T cos(t —¢)+sin 7 sin(r —¢))
A —2cos T cos ¢ sin®(%) sin 7 +cos? 7 sin p+cos o sin® T sin g
cos(7 —¢) sin 5 sin a+cos 7(cos « cos T cos(t —¢)+sin T sin(r —¢) ’

21

where « is the slant, 7 is the tilt, ¢ is the spin, and v is the vergence angle (see
the supplementary material for the derivation, available online at http://
www.mitpressjournals.org/doi/suppl/10.1162/neco.2009.08-08-848). The
vergence angle depends on the interpupillary distance (PD) and viewing
distance (d) and is specified by

PD
_ -1
v =2tan (Zd ) (2.2)

Orientation disparity values increase as the vergence angle grows (when
surfaces are nearer or the eyes are farther apart); thus, typical magnitudes
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Figure 2: Orientation disparity as a function of line orientation for surfaces
rotated about the horizontal axis (tilt = 90 degrees). A horizontal line would
have a spin of 0 degrees, and a vertical line would have a spin of 90 degrees.
A line oriented at 0 degrees produces 0 degrees of orientation disparity at all
slants. Orientation disparities for surfaces slanted about the horizontal axis are
symmetric for spins relative to 90 degrees.

vary across viewing situations and individuals. We always assumed a view-
ing distance of 50 cm and an interpupillary distance of 65 mm, which is
within the normal range for humans.

Figure 2 shows how orientation disparity varies as a function of slant
and spin for a surface slanted about the horizontal axis. For frontoparallel
surfaces, orientation disparity is always 0 degrees regardless of tilt or spin,
and it generally increases with increasing surface slant. Orientation dispar-
ity is highly dependent on the local texture orientation relative to the axis
of rotation specified by tilt, and texture elements that are parallel to the axis
of rotation or horizontal relative to the eyes never result in any orientation
disparities since the rotations do not cause any perspective distortions in
the images. For a surface textured with vertical lines and rotated about the
horizontal, orientation disparity initially grows gradually with slant and
accelerates its growth as slant increases; slants of 60, 70, and 85 degrees
produce orientation disparities of 12.8, 20.2, and 73.1 degrees, respectively.
In general, one would expect orientation disparity to provide better infor-
mation at higher slants because magnitudes are larger and change more
rapidly as slant varies. As the texture elements are oriented away from
90 degrees (vertical), orientation disparity magnitudes are not as large, do
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Figure 3: Orientation disparity for line elements on surfaces as a function of
slant, spin, and two different tilts. (A) Tilt = 0 degree. The axis of rotation for
slant is at 90 degrees, and texture elements oriented at 0 and 90 degrees always
produce 0 degrees of orientation disparity. (B) Tilt = 45 degrees. The axis of
rotation for slant is at 135 degrees. Texture elements oriented at 135 degrees
always produce orientation disparities of 0 degree.

not change as quickly, and no longer increase monotonically with slant (at
least for slants up to 85 degrees), although larger slants are still associ-
ated with relatively larger orientation disparities. For lines oriented at 45 or
135 degrees, the maximum orientation disparity is only about 2.6 degrees,
and the distribution of values starts to become too narrow to support good
slant estimates. Figure 3 shows how orientation disparity values change as
a function of slant and spin (texture element orientation) for tilts of 0 and
45 degrees. While the maximum orientation disparity magnitudes are not
as large at these tilts as for rotation about the horizontal axis (see Figure 2),
there is a larger range of spins that produce relatively large orientation
disparities. At a tilt of 90 degrees, only spins within about 15 degrees of ver-
tical produce orientation disparities above 10 degrees, whereas the range
of spins that exceed this value for tilts of 0 and 45 degrees is larger. When
neither slant nor tilt is known a priori, slant estimation from orientation dis-
parity suffers from an ambiguity that is similar to the aperture problem for
motion perception first described by Stumpf in 1911 (see Todorovic, 1996)
because any pattern of orientation disparities may be consistent with multi-
ple combinations of slant and tilt. Once the tilt is known based on estimates
from other information present in the stimuli (such as from the surface con-
tours or position disparity), the slant can be ascertained using orientation
disparity. In all of our simulations, we assumed that the tilt was known.
We estimated the expected distribution of orientation disparities in nat-
ural scenes by simulating surfaces with random slants, tilts, and spins and
computing the orientation disparity that would result when a line on each
surface is projected to both eyes. For orientation disparity to be useful
for estimating slant, it must produce nonzero values, and its distribution
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Figure 4: Probability distributions of local slant (left) and tilt (right) in natural
scenes. (Reproduced with permission from Yang & Purves, 2003.)

should be sufficiently broad to allow a reasonable mapping between slant
and orientation disparity. In contrast, if a wide range of 3D orientations
produced a narrow range of orientation disparities, it would suggest that
orientation disparity is not a good cue because the variance of the estimates
based on it would be large due to the high degree of overlap across dif-
ferent slants. The 250,000 simulated surfaces with which we approximated
the distribution of orientation disparity were represented by a vector that
was oriented in depth according to a random combination of slant, tilt,
and spin. Slant and tilt were chosen independently according to empiri-
cal probability distributions of local surface orientations in natural scenes
(Yang & Purves, 2003; see Figure 4), and spin was selected from a uniform
distribution. The simulated surfaces were positioned 50 cm from the vir-
tual viewer and were projected binocularly under parallel projection using
an interpupillary distance of 6.5 cm. Figure 5 shows a scatter plot based
on this simulation that represents the distribution of orientation disparity
as a function of the orientation in the left eye. Overall, we obtained sam-
ples across the full 180 degrees range of orientation disparities, and there
was underlying structure within the data that reflected different parameter
values. The mean orientation disparity magnitude was 3.8 degrees with a
standard deviation of 4.1 degrees, and only about 25% of the simulated
surfaces produced orientation disparity magnitudes of less than 1 degree.
The data suggest that orientation disparities of up to about 20 degrees in
either direction commonly occur in natural scenes and that the distribution
of values is sufficiently large for orientation disparity to be a plausible cue
for 3D orientation.

Human two-dimensional (2D) orientation acuity may introduce a limit
on the resolution at which slant can be estimated from orientation dispar-
ity, particularly at low slants, where orientation disparity magnitudes are
small. Psychophysical estimates of orientation discrimination thresholds
vary, but the limit appears to be 0.5 to 1.0 degrees. Published 2D orientation
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Figure 5: Scatter plot of orientation disparity as a function of orientation in

the left eye for simulated surfaces with random slants, tilts, and spins chosen

from distributions that occur in natural scenes. Orientations in the left eye of
0/180 degrees were horizontal, and orientations of 90 degrees were vertical.

acuity levels differ as a function of stimulus size (Orban, Vandenbussche,
& Vogels, 1984; Henrie & Shapley, 2001; Sally & Gurnsey, 2004), contrast
(Salley & Gurnsey, 2004), and orientation (Heeley et al., 2003). Large, high-
contrast stimuli improve orientation discrimination, and performance is
better at horizontal and vertical orientations than at oblique orientations.
For approximately frontoparallel surfaces rotated about the horizontal axis,
an orientation discrimination threshold of 1 degree translates to a maximum
resolution of about 8 degrees of slant using orientation disparity, which is
similar to measured thresholds for frontal surfaces defined by monocular
and binocular cues (Knill & Saunders, 2003). For a surface slanted 70 de-
grees away from the viewer, a 1 degree orientation discrimination threshold
should permit slant estimates from orientation disparity with 1 degree res-
olution, which is better than measured human slant thresholds. Although
orientation acuity may limit the resolution of slant judgments from orienta-
tion disparity, the bounds it could impose would permit slant estimates that
meet or exceed normal human performance. Also, orientation acuity would
be a limiting factor only if neurons that encode orientation disparity depend
on explicit 2D orientation estimates; other possible algorithms, including
those based on binocular image correlations like the disparity energy model
described in section 3.1, might not be subject to this constraint.
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The disparity gradient limit could also restrict the utility of orientation
disparity. The disparity gradient is the ratio of the binocular position dis-
parity difference between two points to the magnitude of the visual angle
separating them. Burt and Julesz (1980) found that once this ratio surpassed
approximately 1.0 (when disparity exceeded angular separation), subjects
could not fuse the images from the two eyes. The actual limit could exceed
1.0 and may vary as a function of the stimulus properties (Prazdny, 1985),
but it applies to both random dot and line stereograms (Tyler, 1974). Assum-
ing that binocular fusion is necessary for accurate stereoscopic estimates,
the disparity gradient limit places an upper bound on the slants at which
any binocular information, including orientation disparity, is useful. A po-
tential explanation for why the disparity gradient limit restricts binocular
vision is that a high disparity gradient indicates that the monocular views
are related by a large horizontal distortion, which reduces the correlations
between the retinal images (Banks, Gepshtein, & Landy, 2004). At a viewing
distance of 50 cm and a tilt of 90 degrees, the disparity gradient exceeds
1.0 only for slants above 82.6 degrees; therefore, the disparity gradient limit
affects only the highest slants.

3 Method

To quantify the amount of information provided by orientation disparity
for estimating 3D orientation, we built a biologically plausible model of
a population of visual cortical neurons tuned to orientation disparity and
analyzed the encoded activity patterns across a variety of slants, tilts, spins,
and texture classes. Since the confound between position disparity and
orientation disparity appears to make direct psychophysical examination
of orientation disparity impossible, we developed a model that uses low-
level mechanisms that are believed to be present in the primary visual cortex
to create a slant detector specifically tuned to different orientations in the
two eyes; this enabled us to estimate how well humans might perform in a
behavioral test using only orientation disparity. First, we generated slanted
surfaces with randomly generated textures and produced binocular image
pairs from these using perspective projection. Then we presented these
image pairs as input to the model, which simulated binocular processing
in the primary visual cortex and produced outputs for individual units
tuned to different combinations of preferred 2D orientations in the two eyes.
Finally, we estimated the level of Fisher information provided by the activity
patterns of the population of units and compared the sensitivity of the
model to threshold estimates for normal slant perception. All simulations
were performed using Matlab, and we used a PC computing cluster for
most of the computations.

3.1 Model. The model we used to process the binocular image pairs was
a standard disparity energy model (Ohzawa et al., 1990; Bridge, Cumming,



Orientation Disparity 2591

/I -=
IRIIR=
@ﬂ [rngu’?v?g’éga%m@m -
/

)|+ REVyy
LM =4

Figure 6: Disparity energy model tuned to orientation differences in the two
eyes. This schematic shows the biologically plausible squaring operation. See
the text for details.

& Parker, 2001) modified to be sensitive to binocular orientation differences
instead of the position or phase differences typically used in models tuned
to position disparity (see Figure 6). The model first computed the outputs
of linear, monocular subunits centered on the fixation point in response to
binocular image pairs. These receptive fields were constructed from Gabor
filters, which are sinusoids convolved with gaussian functions. They were
20 x 20 pixels in size and had a spatial frequency bandwidth of 1 octave
and an orientation bandwidth of 28 degrees. Pixel sizes used in our model
were based on a display with 1024 x 768 pixel resolution (3779.5 pixels =
1 m). Half of the units were tuned to a preferred spatial frequency of 0.1
cycles per pixel, which matched the kernels used to generate the textured
stimuli, and a second set of units was sensitive to a spatial frequency range
1 octave higher to capture the higher spatial frequencies that occurred at
larger slants due to texture compression. Each eye had receptive fields with
phases that were 90 degrees apart (in quadrature), which allowed the model
to be sensitive to both oriented bars (the “even” receptive fields shown on
top in Figure 6) and oriented edges (the “odd” receptive fields on bottom).
The receptive field responses encoded contrast polarity using signed out-
puts,! and these outputs from the left and right eyes were summed and
squared (see equation 3.1). This created binocular units that were sensitive
to particular orientation disparities specified by differences between the
preferred orientations of the monocular receptive fields.

1Since neurons cannot have negative firing rates, different cells must respond to
opposite contrast polarities. A biologically plausible implementation of the squaring
operation would be to half-wave-rectify the outputs of receptive fields with opposite
preferred contrast polarities, sum them, and square them. Mathematically, our approach
was equivalent.
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The model’s final step was to apply contrast normalization to each unit
by dividing the total computed binocular energy by the sum of the mean
squared outputs of all of the monocular receptive fields over all preferred
orientations. The contrast normalization removed the effects of local con-
trast variations across different images and ensured that the responses pri-
marily reflected orientation content. It also helped isolate the correlations
in the left and right images. The final output of the model was a measure
of orientation disparity “energy” for each unit that should correlate with
the firing rates of binocular visual cortical neurons with similar tuning
properties. We computed energy using the following equation:

(Le(6L) + Re(OR))* 4 (Lo(6L) + Ro(6r))?
(LE®)?) +(Lo(0)?) + (Re(0)?) + (Ro(6)?)

Energy(6r, 6r) = (3.1)

Lg(6y) is the response of the left monocular, even-symmetric subunit tuned
to orientation 6;, and Ro(6Rr) is the response of the right monocular, odd-
symmetric subunit tuned to orientation 6r. The terms in the denominator
within the angle brackets represent averaged responses across all sampled
preferred orientations.

The receptive fields receiving input from the left eye were tuned to
orientations from 0 to 170 degrees in 10 degree increments, and we varied
the preferred orientation in the right eye in 5 degree increments relative to
the preferred orientation in the corresponding left receptive field to create
preferred orientation disparities of up to 80 degrees. This resulted in 458
combinations of preferred orientations in the two eyes at the two different
spatial frequency bands for a total of 916 units. This method of sampling
orientation space was not biologically grounded but allowed us to sample a
widerange of 2D orientations and orientation disparities with a manageable
number of simulated units.

For a control condition, we modified the orientation disparity energy
model to use only monocular input. This allowed us to separate the
performance of the binocular model that was due to orientation disparity
from performance due to unintended correlations between slant and local
texture orientation or spatial frequency. The monocular energy model used
receptive fields from the left eye at the same 18 preferred orientations as be-
fore (0-170 degrees in 10 degree increments) and at the same two preferred
spatial frequencies for a total of 36 units. Both the monocular and binocular
models used the same textures as input. The equation for monocular
energy is provided below; the nomenclature is the same as for the previous
equation:

Le(0r)* + Lo(6L)?
(LE(6)?) + (Lo(6)?)

Energy(0r) = (3.2)
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Figure 7: Examples of (A) broadband noise, (B) bandpass noise, and (C) ori-
ented grating textures that were used as stimuli.

To increase the biological plausibility of our results, we corrupted the
outputs of both models with simulated zero-mean gaussian neural noise.
Current theories suggest that neuronal activity is subject to noise that is
proportional to the firing rate of each neuron. Gur and Snodderly (2006)
found that the median Fano factor, the ratio of the variance of the noise to
the mean neural activity, in the primary visual cortex of awake, behaving
monkeys was approximately 0.3, so we ran simulations using Fano factors
0f 0,0.15, and 0.3. We selected the variance parameters for the internal noise
distributions independently for each unit and for every sample based on
the resulting energy levels.

3.2 Stimuli. The stimuli used as input to our model were textured
planes slanted about their horizontal axis (tilt = 90 degrees) and positioned
50 cm in front of a virtual viewer with an interpupillary distance of 65
mm. The surfaces were sufficiently large so that 40 x 50 pixel (10.6 mm x
13.2 mm) regions could be removed from the centers of the left and right
images after the surface was spun, slanted, and projected to each eye under
perspective projection without including any borders. They were slanted by
up to 85 degrees in either direction away from frontoparallel. Performance
was symmetric about frontoparallel, but including both directions enabled
us to show that orientation disparity can be used to estimate slant over
the full 180 degree range. The model’s receptive fields for both eyes were
positioned on the center of the stimuli, where position disparities were
the smallest. The resulting binocular image pairs were presented as input
to a binocular disparity energy model tuned to orientation disparity, as
described above.

We used three types of textures to study how the orientation content
of different textures modulates the reliability of orientation disparity. Our
prediction was that the amount of information provided by orientation
disparity might vary depending on the spectral properties of the surface
texture and that textures composed of line elements would result in better
performance than random dots. The broadband textures (see Figure 7A)
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contained a uniform distribution across all 2D orientations and were gen-
erated by convolving gaussian noise (~N(0,1)) with a two-dimensional
difference-of-gaussians filter. We created the bandpass textures (see Fig-
ure 7B) by convolving gaussian noise with a two-dimensional Gabor fil-
ter, and they contained a dominant central orientation with an orientation
bandwidth of about 60 degrees. Textures in the third class, oriented grat-
ings (see Figure 7C), contained only a single orientation. To generate these,
we filtered a one-dimensional gaussian noise vector with a one-dimensional
Gabor function and duplicated the result to produce the rows, which varied
randomly in luminance. Although the texture classes differed in orientation
content, their spatial frequency content was otherwise identical. All of the
textures had a central spatial frequency of 0.1 cycles per pixel (3.3 c¢/deg)
and a bandwidth of 1 octave relative to this frequency.

3.3 Analysis of Fisher Information. To quantify the reliability of 3D
orientation information from orientation disparity, we used an approach
based on linear discriminant analysis (Duda & Hart, 1973). Linear discrimi-
nant analysis is primarily a classification technique; one finds a hyperplane
within the multidimensional data space that best separates two classes, and
samples to be classified are projected onto a vector that is normal to that hy-
perplane. Any samples that fall on one side of the discriminant hyperplane
are classified as belonging to one category, and samples that fall on the other
side are classified as belonging to the other category. We computed the local
Fisher information at a slant Sby first finding the linear discriminant (w) that
separated the population of neural responses (A) to stimuli at S — 2.5%(cr)
from the population of neural responses to stimuli at S + 2.5°(«a2). We then
used the following equation to compute the Fisher information:

[ = {(Aln) =) - w) — ((Alea) — 1) - w))>? _ (3.3)

2 2 2
(@) —wyw + O —yw) OEstimator
2

(a1 — an)?

This is equivalent to the squared d’ between the population responses to
stimuli at the true slants normalized by the slant difference. It is inversely
proportional to the Cramer-Rao lower bound on the variance of the best
unbiased slant decoder from the neural population response (assuming
the optimal decoder is linear within the 5 degree range spanned by the test
stimuli).

One problem with the standard approach for finding linear discriminants
is that it involves inverting a covariance matrix, which requires sufficient
training data to avoid singular covariance matrices. Since our model in-
cluded 916 units, the covariance matrices contained 839,056 elements, and
it would have required over 3 million training samples at each slant to rea-
sonably estimate these matrices. This was not feasible in terms of time or
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computer resources (computer time, memory, and data storage), so we ap-
proximated the linear discriminants by minimizing an error function using
conjugate gradient descent (Hestenes & Stiefel, 1952). Our error function ar-
bitrarily set —1 as the target value for one slant and +1 for the slant 5 degrees
higher, and we found a set of weights (w) that minimized the value of

10000

Error=3 % (T(@) — (Aun — 1) - w)’, (34)

acay,ax N=1

where A,y was the simulated activity pattern from training example N
at slant o, u was the combined mean activity at slants «; and «, and T («)
was the target value. We generated 20,000 training examples at each of the
slants 2.5 degrees above and below each main slant, which were between
—80 degrees and 80 degrees in 10 degree increments, and split each training
set into two sets of 10,000 examples; one set was used to train the weight
vectors, and we used performance on the other set as a stopping criterion.
The weights were initialized to zero for a bias toward low weights, and
the algorithm terminated when performance on the stopping set no longer
improved. We computed the linear discriminant weights separately for
the two frequency bands because the algorithm used differences in spatial
frequency content to distinguish among slants when we computed the
weights for all of the units at once.

The gradient descent algorithm produced a set of weights at 10 degree
slant intervals that could be used to classify an unknown surface as be-
longing to one of two slants that were 5 degrees apart. Next, we quantified
the amount of information present in the activity patterns using additional
10,000 sample testing sets. We used the values of u computed for each slant
interval during training to center the data before projecting them onto the
linear discriminant vectors. Using separate data for training and testing
(cross-validation) ensured that the observed performance was not a result
of overfitting the data.

4 Results

4.1 Effects of Sensorineural Noise. We computed the Fisher informa-
tion extracted from the model’s simulated activity patterns and also con-
verted this into predicted standard deviations that indicate the expected
performance of an unbiased decoder. Using the broadband textures as in-
put, we examined the effects of sensorineural noise on the information con-
tained in the activity patterns our model produced; the results are shown
in Figure 8. The solid gray lines indicate the Fisher information captured
by the binocular model, which primarily used orientation disparity but
may also have relied on monocular information and a negligible amount of
coarse position disparity information. We minimized the effects of position
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disparity by using image patches at fixation and centered on the axis of rota-
tion. The dashed gray lines show the performance of the monocular model,
which correlated orientation content and spatial frequency content with
surface slant. Since the binocular energy model contained some monocular
information, we estimated the Fisher information resulting from orientation
disparity by subtracting the monocular information from the total informa-
tion estimated from the binocular model; the solid black lines show these
estimates. Figures 8A to 8C show the amount of Fisher information con-
tained in the activity patterns, and Figures 8D to 8F express the same data
as a lower bound on the standard deviation of an unbiased estimator as
described earlier. The standard deviation of a uniform distribution over
the 180 degree range is about 52 degrees, so standard deviations of this
magnitude or higher would indicate chance performance.

For the data presented in Figures 8A and 8D, the only variability in the
output of the model was due to random variations in the input patterns;
no additional sensorineural noise was included. This provided an upper
bound on performance but was not realistic because the visual system has
internal noise. Performance improved at extreme slants as expected, but
the model performed even better for frontoparallel stimuli, which was not
expected because these stimuli contained minimal orientation disparity.
There were two apparent trends in the linear discriminant weights based
on these stimuli: units tuned to positive and negative orientation disparities
tended to be assigned weights with opposite signs, and the magnitudes of
the weights tended to be higher for units tuned to orientations in the two
eyes that were symmetric about 90 degrees. Although the preference for the
symmetric orientations may have suggested that the linear discriminants
were sensitive to patterns associated with vertical texture elements, which
would have been the most informative for a tilt of 90 degrees, it seems
more likely that they relied on binocular correlations between the retinal
image pairs, to which the disparity energy model was also sensitive. As
slant increased, perspective transformations caused the textures to rotate in
opposite directions when projected to the eyes, and the correlations would
have been the highest at preferred orientations that were symmetric about
the vertical axis. Since the transformations were not pure rotations, the
correlations also decreased with increasing slant. Without any noise added
to the units, these small differences that occurred at low slants were large
enough to produce excellent performance. However, as the other figure
panels show, the unexpected high performance on stimuli at low slants was
not robust to noise. The monocular model performed poorly relative to the
binocular model; this indicated that the performance of the binocular model,
which produced standard deviations of 2.7 degrees at slants of £80 degrees,
was due to orientation disparity rather than monocular information.

The data shown in the remaining panels resulted from adding noise to
the outputs of the simulated neurons. Internal noise can actually be helpful
because it regularizes the data and ensures that the system relies on the
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Figure 9: Performance as a function of the type of texture provided as input
to the model with a Fano factor of 0.3. (Left) Estimated Fisher information.
(Right) Lower bounds on standard deviation predicted from the Fisher
information.

most robust cues. We used a Fano factor of 0.15 in Figures 8B and 8E, which
was half the amount of noise added to the units represented in Figures 8D
and 8F. As previously stated, the Fano factor of 0.3 used for the simulations
shown in Figures 8D and 8F matched the median Fano factor estimated in
the primary visual cortex of awake, behaving monkeys (Gur & Snodderly,
2006). The sample textures used as input were identical across all three
noise conditions. Adding noise universally reduced performance, but it
affected low slants much more than high slants. The high performance
we observed for low slants in the noise-free condition disappeared when
noise was added, after which these slants produced the lowest measures of
Fisher information. In subsequent simulations, we always added noise to
the simulated activity patterns using a Fano factor of 0.3.

4.2 Effects of Texture and Orientation Content. One of our predictions
was that the variations in the orientation content of the different texture
classes would produce differences in the performance of our model. Specif-
ically, we predicted that grating patterns, which have a clear orientation,
would produce better discriminability than textures that are broadband in
orientation content. We compared performance using random luminance
grating patterns with textures that were bandpass or broadband in orienta-
tion content (see Figure 7). The gratings and bandpass textures were spun
so that their primary orientation was vertical (spin was irrelevant for the
broadband textures due to their isotropy). Consequently, our analysis of
different textures measured the ideal performance for each stimulus class.

A comparison of the information content from different texture classes
is presented in Figure 9. In this and all subsequent figures, we averaged the
data from equal slant magnitudes to help smooth the data since the data
were symmetric about 0 degrees. Also, we show only performance due
to orientation disparity, which we estimated using the differences between
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Figure 10: Performance from orientation disparity on bandpass textures
with the central orientation spun to the orientations indicated as shown by
(left) Fisher information and (right) predicted standard deviations based on
Fisher information. Spin: 0 ° = horizontal, 90° = vertical.

the Fisher information estimates from the binocular and monocular models.
The data from the broadband patterns are the same as previously displayed
in Figures 8C and 8F, and the dashed and dotted patterns show performance
on vertically oriented bandpass textures and vertical grating patterns, re-
spectively. As expected, the measured Fisher information was highest for
the vertical grating patterns. When the spin of a grating pattern is known
and there is no internal noise, there is a bijection between the orientations
seen by the two eyes and the slant of the target that allows the monocular
model to perform as well as the binocular model. Adding internal noise to
the model obscured this mapping and revealed the advantage of binocular
processing. The amount of Fisher information extracted from the broad-
band and bandpass textures was much lower than that from the gratings.
Bandpass textures outperformed broadband textures across the entire ori-
entation range we analyzed, although the difference was not very large
at the highest slants. For bandpass textures, performance was well above
chance across the entire range of slants we used, whereas performance
on broadband textures was at chance levels up to about 40 degrees from
frontoparallel.

A better comparison would be to randomly spin the grating and band-
pass textures before presenting them to the model, but there was a nonlinear
interaction between slant and spin in these cases that would have caused
problems for the linear discriminant analysis. Average performance on ran-
domly spun patterns should be lower than what we found for the vertical
patterns because the specific orientations present in the texture make a
difference. To explore this further, we quantified how information from
orientation disparity changed as a function of texture orientation.

Figure 10 shows how the information provided by orientation disparity
changed as the dominant orientation of bandpass textures varied from 15
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Figure 11: Performance on broadband textures as a function of tilt shown using
estimated (left) Fisher information and (right) standard deviations.

to 90 degrees in 15 degree increments. The 30 degree bandwidths of the
bandpass textures produced overlapping orientation content for neighbor-
ing spin conditions. The data for a spin of 90 degrees (vertical) is the same as
shown in Figure 9. There should be no information present when the only
orientation present is 0 degrees since the orientations of horizontal lines do
not change when slanted about the horizontal. The bandpass textures spun
to 0 degrees provided some information from their nonhorizontal compo-
nents, but this was minimal, and the conjugate gradient-descent algorithm
did not work well on those samples. The results indicated monotonically
decreasing performance as the orientation content shifted from vertical.
This shows that even though the vertical bandpass and grating patterns
outperformed the broadband patterns, their performance would be more
similar when averaged across spins.

4.3 Effects of Tilt. Up to this point, all of the results from our model
have been based on surfaces slanted about the horizontal axis, but it is also
important to examine how the information content varies over a range of
surface orientations. Specifically, if the model could estimate slant only for
surfaces tilted at 90 degrees, this would be evidence that the human visual
system should not use orientation disparity. Consequently, we used our
model to compare performance on broadband stimuli tilted at 90 degrees
(rotation about the horizontal axis), 45 degrees (rotation about an oblique
axis), and 0 degrees (rotation about the vertical axis). A tilt of 90 degrees
can produce the largest orientation disparities (see Figures 2 and 3), but
the results of our simulations shown in Figure 11 indicated that slanting
stimuli about the horizontal axis does not produce the best slant estimates
from orientation disparity. Instead, tilts of 45 and 0 degrees produced better
performance. The reason for this, as suggested earlier, is that the wider
distribution of orientation disparities across different spins at these tilts
allowed better discrimination of slant from orientation disparity. These
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results show that orientation disparity provides useful information about
3D orientation across the full range of tilts.

5 Discussion

In all of the simulations, we found that, as predicted, performance was
best for high slants and worst for low slants, which have been the primary
foci of previous orientation disparity studies. The only exception was that
a simulation lacking internal noise produced excellent performance near
frontoparallel, but this was due to artifacts in the stimuli that did not per-
sist with even small amounts of internal noise. The binocular models con-
sistently extracted more information from the stimuli than the monocular
models, which were relatively uninformative except at the highest slants,
where the signal-to-noise ratio for spatial frequency differences became suf-
ficiently high. The results indicated that orientation disparity carries useful
slant information but mostly at higher slants beyond about 45 degrees. This
was true even for strongly oriented stimuli.

Our estimates of the information that orientation disparity provides
about 3D orientation depend on the level of sensorineural noise. We
compared performance as a function of noise levels and found that
increasing the noise had a very small impact on performance at high slants
but a comparatively large impact on low slants. At low slants, there were
artifacts that helped the system discriminate between surfaces that were
near frontoparallel, but these effects disappeared with the addition of a
small amount of noise. Even for textures that were broadband in orientation
content, performance at high slants was remarkably robust to noise. How
well we can use orientation disparity to discriminate among different low
slants depends considerably on the levels of internal noise found in the
visual system, and we have outlined an expected range of performance.

The orientation spectra of different textures have a substantial influence
on how much information orientation disparity can contribute, and we
used a range of textures to describe a range of performance. Broadband
textures contain a random distribution of orientations and are more similar
to textures commonly encountered in natural environments, whereas ori-
ented gratings, which contain a single orientation, are at the other extreme
because they are helpful for testing the limits of the visual system but are
less common in natural scenes. Not surprisingly, we found that the informa-
tion from vertical gratings was much higher than the information obtained
using broadband textures. Bandpass textures, which contained a broader
range of orientations than the gratings but still had a dominant vertical ori-
entation, produced performance that was between the performances on the
vertical gratings and broadband textures. We also used the bandpass stim-
uli to test the effect of spin, and performance decreased as the patterns were
rotated away from the vertical orientation, which was what we predicted.
This showed that spin is a relevant factor for oriented textures. If the grating
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patterns were spun randomly, the visual system’s performance would be
expected to decline as the angle of the texture elements away from vertical
increased. Average performance for the oriented textures across all spins
would be lower than our results using the vertical textures, and it would
not seem unreasonable to expect performance to approach levels similar to
those we found using broadband stimuli.

As shown in Figures 2, 3, and 10, tilt also affects orientation disparity,
and there are often multiple combinations of slants and tilts that can pro-
duce the same orientation disparities. For the purposes of our model, we
assumed that the tilt was known, but since slant and tilt are confounded
in orientation disparity, our measures slightly overestimated the amount
of information that orientation disparity provided. In general, additional
mechanisms must determine the tilt of a surface using other visual cues
before orientation disparity can help estimate its slant. This information
could be derived from monocular cues including contour compression, tex-
ture gradients, or shading or from binocular disparity gradients. Once the
tilt is known, orientation disparity can be a useful source of information
about 3D orientation. We tested our model on stimuli using different tilts
and found that orientation disparity provides useful information about
slant over the entire range of tilts.

Our model performed at levels that were generally within the range of
normal human acuity for estimating slant from binocular vision, particu-
larly at high slants. This showed that a biologically plausible model tuned
only to orientation disparity could estimate surface slant with performance
that is similar to that of human observers. While we cannot say for certain
whether the visual system actually uses orientation disparity to estimate
slant, the levels of Fisher information we measured did not eliminate it as a
useful cue, and our results may be helpful for guiding future psychophysi-
cal and neurophysiological investigations. It is possible that better decoding
schemes could extract more information from the simulated activity pat-
terns and produce better overall performance. Also, our model used only
single small image patches, and integrating over multiple image patches
would produce further performance gains. The standard deviations we
predicted from the estimated Fisher information are therefore not absolute
bounds on slant estimation from orientation disparity, but any visual cor-
tical mechanism tuned to orientation disparity could conceivably estimate
slants at the levels we found and should show similar effects of slant, tilt,
orientation content, and internal noise levels. We want to emphasize that
orientation disparity is not a necessary or sufficient cue for slant estima-
tion and that we are not proposing that the visual system uses it instead of
position disparity. Instead, orientation disparity is just one of several cues
for 3D orientation, including position disparity gradients and monocular
perspective cues like aspect ratio and texture compression. The confound
between position disparity and orientation disparity suggests that they may
be two aspects of the same binocular cue, and combining them could result
in better estimates of 3D orientation.
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