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An Ideal Observer Analysis of Visual Working Memory
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Limits in visual working memory (VWM) strongly constrain human performance across many tasks.
However, the nature of these limits is not well understood. In this article we develop an ideal observer
analysis of human VWM by deriving the expected behavior of an optimally performing but limited-
capacity memory system. This analysis is framed around rate—distortion theory, a branch of information
theory that provides optimal bounds on the accuracy of information transmission subject to a fixed
information capacity. The result of the ideal observer analysis is a theoretical framework that provides
a task-independent and quantitative definition of visual memory capacity and yields novel predictions
regarding human performance. These predictions are subsequently evaluated and confirmed in 2
empirical studies. Further, the framework is general enough to allow the specification and testing of
alternative models of visual memory (e.g., how capacity is distributed across multiple items). We
demonstrate that a simple model developed on the basis of the ideal observer analysis—one that allows
variability in the number of stored memory representations but does not assume the presence of a fixed
item limit—provides an excellent account of the empirical data and further offers a principled reinter-
pretation of existing models of VWM.
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Visual working memory (VWM)—defined as the ability to
store task-relevant visual information in a rapidly accessible and
easily manipulated form (Luck, 2008)—is a central component of
nearly all human activities. It plays a critical role in online move-
ment control (Brouwer & Knill, 2007, 2009), integration of visual
information across eye movements (Irwin, 1991), visual search
(Desimone & Duncan, 1995; Oh & Kim, 2004), and gaze correc-
tion following saccadic error (Hollingworth, Richard, & Luck,
2008), among other functions. Given its biological importance, it
is perhaps surprising that the capacity of this system is severely
limited. Many investigations of human performance have revealed
that we can accurately store only a surprisingly limited amount of
visual information in working memory (for reviews, see Brady,
Konkle, & Alvarez, 2011; Luck, 2008).

In recent years there have been numerous attempts to define and
quantify what is meant by VWM capacity. Until recently, the
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prevailing view has held that memory capacity is defined by a
small, fixed number of discrete “slots” (Awh, Barton, & Vogel,
2007; Cowan, 2001; Lee & Chun, 2001; Luck & Vogel, 1997;
Morey, 2011; Olsson & Poom, 2005; Rouder et al., 2008; Vogel,
Woodman, & Luck, 2001), each of which can store a single visual
object. The origins of this item-limited conception of working
memory capacity may be attributed to Sperling (1960), who found
that when experimental subjects were asked to recall letters or
digits briefly presented in arrays, the subjects were able to report
only four to five items correctly, even though it could be ascer-
tained that nearly all items were present in iconic memory. Around
the same time, George Miller (1956) drew on experimental evi-
dence from a variety of sources and proposed that humans possess
a limited “span of immediate memory” of around seven items.

According to the simplest form of the item-limit model of visual
working memory, visual objects can be maintained in memory
with accuracy that is independent of the total number of items
stored. That is to say, storing additional items does not degrade the
quality of each memory representation. Further, this basic model
does not posit any constraints on the visual complexity of an
individual object stored in memory. For example, Vogel et al.
(2001) found that the estimated capacity limit of 3—4 items did not
decrease when subjects were required to simultaneously store the
color and orientation of objects, compared to the simpler task of
storing only a single visual feature dimension.

Although successful in accounting for many aspects of empiri-
cal behavior, this basic slot model has been challenged. Several
studies have shown that the complexity of visual objects interacts
with memory capacity (Alvarez & Cavanagh, 2004; Luria, Sessa,
Gotler, Jolicoeur, & Dell’Acqua, 2010) or that memory perfor-
mance is higher when objects are taken from a domain of visual
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expertise (Curby, Glazek, & Gauthier, 2009). However, some
studies have found no effects of familiarity on visual change
detection performance (e.g., Pashler, 1988), and subsequent re-
search has suggested that it may be the precision and not number
of representations that is impacted by object complexity or famil-
iarity (Awh et al., 2007; Scolari, Vogel, & Awh, 2008). Other
researchers have explored how the precision of features stored in
visual working memory may vary as a function of the number of
items that are concurrently stored (Bays, Catalao, & Husain, 2009;
Bays & Husain, 2008; Bays, Wu, & Husain, 2011; Palmer, 1990;
Wilken & Ma, 2004). Based on the finding that memory precision
appears to decrease even when as few as 2 items are stored, it has
been proposed (Bays & Husain, 2008; Palmer, 1990; Wilken &
Ma, 2004) that VWM capacity does not consist of a set of inde-
pendent representations (slots) but is rather defined by a single,
continuous pool of resources that is divided among all visual
objects in a scene: When two objects are stored, each receives half
of the available resources. As a result, the precision of memory
representations is not constant but depends on the total number of
items stored. Countering this hypothesis, a more recent version of
the item-limit model, known as the “slots+averaging” model
(D. E. Anderson, Vogel, & Awh, 2011; Cowan & Rouder, 2009;
Zhang & Luck, 2008), holds to the claim that there are a fixed number
of slots (hypothesized to be around 3—4). But when fewer than the
limit are stored, two slots may “double up” by storing the same object,
resulting in an increase in memory precision for that object.

Although both item-limit and continuous resource models are
able to account for a range of empirical findings, neither has been
defined in enough detail to provide complete theories of human
VWM or to support quantitative predictions of human perfor-
mance across a broad range of tasks and conditions. An important
limitation of both models is that the relationship between hypoth-
esized capacity limits and absolute performance has not been fully
specified. In the case of item-limit models, an open question
concerns how the precision of representations should be con-
strained for items stored in individual slots. Existing item-limit
models specify one type of capacity limit, on the maximum num-
ber of items that can be stored, but offer little or no theoretical
contribution regarding the capacity limits for individual items
represented in individual slots. The continuous resource model
assumes that performance is constrained not by a discrete item
limit but rather by a central pool of resources (e.g., encoding
information via populations of neurons). However, in existing
versions of the model there is no task-independent way of quan-
tifying the overall capacity of visual memory, and consequently
the model cannot predict in absolute fashion how memory capacity
should relate to behavioral performance.

In the present paper, we address these shortcomings by devel-
oping a theoretical framework for studying and understanding how
limits on memory capacity relate to observed limits on perfor-
mance. Rather than proposing theoretical mechanisms a posteriori
to the empirical phenomena of visual memory, we instead develop
predictions for behavior using the formal framework of informa-
tion theory (Shannon & Weaver, 1949). In adopting this approach,
the present analysis falls under the family of ideal observer anal-
yses (Geisler, 2003, 2011) that have been successfully applied to
understanding other aspects of the visual system (Knill & Rich-
ards, 1996; Najemnik & Geisler, 2005;Pelli, 1990; Sims, Jacobs, &
Knill, 2011).

In specitying the optimal performance for a given task, an ideal
observer analysis serves as an important benchmark for comparison
with human behavior. If humans are found to behave in close approx-
imation to the ideal observer, their behavior can be explained as a
rational consequence of the information available in an environment
and known processing constraints on performance. Furthermore, any
performance limitations predicted by the analysis can be given a
strong theoretical, rather than speculative, interpretation. Finally, the
framework follows in the spirit of sequential ideal observer analysis
(Geisler, 1989), in which information coding constraints imposed at
different stages of processing in the human visual system are folded
into the definition of an ideal observer, allowing one to infer the
relative impact of different components of visual processing on per-
formance. The framework supports modeling the constraints imposed
by different functional architectures for VWM (e.g., continuous re-
source vs. slots) on information encoding and hence on psychophys-
ical performance in a variety of tasks. This supports “strong infer-
ence” comparisons of qualitatively different models of VWM from
empirical data (Platt, 1964).

The starting point of the analysis is the fact that visual working
memory may productively be studied as an information transmis-
sion channel. Unlike that of artificial communication systems, the
purpose of human memory is not, primarily, to transmit informa-
tion across large distances but rather to efficiently store and
transmit information across time. Our analysis of VWM having
been framed around this basic point, the resulting construct of a
capacity limit is quantitative, theoretically grounded, and com-
pletely task independent. Memory capacity is formally defined in
terms of Shannon information, or equivalently, the more familiar
unit of bits. Much of the present analysis draws on results from a
branch of information theory known as rate—distortion theory
(Berger, 1971; Shannon & Weaver, 1949). Rate—distortion theory
provides the theoretical bounds on performance for any capacity-
limited communication system. That is to say, for a given capacity
limit, no physical system (biological or artificial) can exhibit
performance that exceeds the limits defined by the theory. As
applied to visual working memory, rate—distortion theory predicts
the optimal performance of human memory, when performance is
constrained by a fixed information capacity.

Rather than defining a single, specific model of visual memory,
the ideal observer analysis instead serves as the basis for a novel
theoretical framework that can be used for developing and evalu-
ating different models of VWM. The common element among
models developed using this framework is the quantitative rela-
tionship between a fixed memory capacity, specified using
information-theoretic constructs, and the absolute levels of human
performance that can be achieved under the given capacity limit.
Different models may entertain different assumptions regarding
the encoding process for visual memory (e.g., whether a fixed
number of items is stored, as hypothesized by discrete item-limit
models) and how capacity is divided among items stored in mem-
ory." Interestingly, both discrete slot and continuous resource
models can naturally be placed within the resulting theoretical
framework. As a result, existing models are given a stronger
theoretical interpretation and, as we demonstrate, can be system-

! The term encoding is meant throughout to be shorthand for the process
of storing information in visual working memory.
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atically compared and evaluated by adding or removing assump-
tions and constraints.

Beyond providing a principled reinterpretation of existing mod-
els, the ideal observer analysis yields quantitative predictions for
human performance, including a novel prediction regarding the
relationship between memory precision and the variance of visual
features in the environment. In particular, the ideal observer anal-
ysis predicts that when performance is constrained by a capacity
bottleneck, visual features with low variance in the environment
are fundamentally easier to encode (resulting in higher memory
precision) than features with high variance. In the present paper,
two behavioral experiments are described that are designed to test
and ultimately confirm this prediction.

It is then demonstrated that a simple model derived from the
ideal observer analysis is able to offer a quantitative and parsimo-
nious account for the data. We find that human performance across
both of our experiments is best characterized not by existing
discrete slot or continuous resource models. Rather, the results
suggest that encoding variability plays a large role in accounting
for VWM performance. According to this view, items are proba-
bilistically selected to be encoded in visual working memory, such
that there is trial-to-trial variability in the number of stored items.
Unlike the continuous resource model, people may sometimes
encode only a small subset of stimulus items in a given display.
Previous discussions of item limit theories have allowed for the
possibility of trial-to-trial variability in the number of stored rep-
resentations (e.g., Luck, 2008, p. 56; Vogel et al., 2001), but the
relative contribution of this variability has not been explicitly
tested in item-limit models fit to human data. Our results support
the hypothesis that memory variability alone, in the absence of an
explicit item limit, can account for much of the empirical proper-
ties of VWM performance (for a related model, see Van den Berg,
Shin, Chou, George, & Ma, 2012). According to the best interpre-
tation of the present data, people may sometimes encode and
remember many items with low precision and may sometimes
remember a few items precisely.

In the next section we provide a brief background on rate—
distortion theory. We then apply the theory to develop the ideal
observer analysis of visual working memory, before describing
two experiments that test the predictions of the analysis.

Background on Rate-Distortion Theory

Claude Shannon noted in his seminal work on information
theory that “the fundamental problem of communication is that of
reproducing at one point either exactly or approximately a message
selected at another point” (Shannon & Weaver, 1949, p. 31). By
stating the basis of information theory in this completely general
form, Shannon recognized that the results from the theory are
applicable to any domain where information must be conveyed
over time or space. Human visual working memory, according to
this understanding, is a communication channel that functions by
attempting to accurately transmit visual information from the time
that it is first received by the sensory apparatus to the moment that
it is later recalled or further processed to aid in performing a task.
This section first considers the properties of a completely abstract
but optimally performing communication channel. In the next
section, it is shown how the properties derived for this abstract

channel have direct implications for the performance of human
visual working memory.

Intuitively, we develop a model of VWM according to which
memory representations are noise-corrupted versions of incoming
sensory signals. The amount of capacity available to memory
determines the amount of noise that corrupts each representation:
If capacity is high, memory representations are accurate and
largely uncorrupted by noise. If memory capacity is low, each
memory representation consists of a highly noise-corrupted ver-
sion of the original sensory signal, and the accuracy of memory is
expected to be poor. The visual working memory system is as-
sumed to implement an optimal (Bayesian) decoder for these noisy
representations. That is to say, given a particular noisy encoding of
a sensory signal, the memory decoding process attempts to accu-
rately reconstruct the original visual feature. This model further
assumes that memory representations are adapted to the statistics
of features in the environment: The optimal memory reconstruc-
tion is defined by a weighted combination of the noisy information
available from memory and the prior probability of different
feature values determined by past experience or context.

The present analysis deals with the case where visual working
memory must store simple visual features such as line length or
orientation. These features are continuous valued and in a partic-
ular task or environmental context can be described by a proba-
bility density function. For example, if x is the length of a line
segment, then the context of previous trials or past experience
might establish that x is a sample from some distribution p(x) (such
as a Gaussian distribution with a particular mean and variance).

The task for visual working memory is to store an accurate
representation of x over the relevant retention interval. Given the
fact that memory is imperfect, the remembered feature value will
in general be different from the sensory input. If x is defined as the
input to memory and x,,, is defined as the remembered feature
value, then it is meaningful to treat visual working memory as a
communication channel with a conditional channel distribution
Pp(xoudx). The channel distribution specifies the probability distri-
bution over possible memory representations for a given visual
feature.

An important quantity that characterizes this channel is its
average information rate. Intuitively, if the channel is very noisy
or otherwise limited, observing x,, will, on average, leave sub-
stantial uncertainty regarding the original feature value x; such a
channel would be intuited to have a low information rate. Con-
versely, a noise-free information channel will be such that it is
possible to accurately estimate x by observing only the channel
output. More formally, the information rate, R, for a particular
channel and information source is defined as the average mutual
information of the channel input and output,

R=1 ()C, xoul)

|
= [ [ proud) p) 1og[w}dx B (D)
P (Xou)

Mutual information is a mathematical quantity that specifies how
much the observation of one variable reduces the uncertainty
regarding the value of another variable. This equation therefore
captures the intuition that a channel with a high information rate
will, on average, reduce much of the uncertainty regarding the
input value x after observing the channel output x_ . When the log-

out®



810 SIMS, JACOBS, AND KNILL

arithm is taken as base 2, the information rate for a channel is
measured in units of bits. A channel with an information rate of R
bits allows for perfectly discriminating between 2% different values
(assuming all values are equally likely to occur); thus, accurately
reporting the outcome of rolling an eight-sided die would require
a channel with an information rate of at least 3 bits. The use of the
term rate is due to the fact that information rate measures the
average amount of information transmitted per event, averaging
across a long sequence of random events (e.g., repeatedly rolling
a die). As applied to human VWM, the information rate of mem-
ory, as measured in bits, is the average quantity of information
preserved about visual features over a given retention interval.

One complication that arises for the case of continuous-valued
features such as line length or orientation is that channels with
finite information rate can transmit only an approximation to
values drawn from continuous distributions. Information theory
dictates that in this case, it is guaranteed that on average, some
amount of information will be lost in the process of storing
features in visual working memory. Given this fundamental limi-
tation, an important question arises in designing or understanding
any physical communication system. For a channel with a finite
information rate R, what is the smallest possible error that can be
achieved by the given channel? Or alternatively, for a desired level
of performance, what is the minimum information rate necessary
for a channel to achieve this criterion performance?

The branch of information theory that addresses these questions
is known as rate—distortion theory ( Berger, 1971; Shannon &
Weaver, 1949). Fundamentally, rate—distortion theory provides
the optimal solution to the problem of information storage or
transmission, when performance is constrained by the capacity
limit of a channel. The two central constructs in the theory are the
average information rate of a channel, defined for continuous-
valued information sources in Equation 1, and the channel distor-
tion, D. The distortion of a channel is defined by a function d(x,
Xou) that assigns a numerical cost to the event that an input value
x is reproduced by the communication channel as x_,, # x. Intu-
itively, a perfect communication channel would introduce zero
discrepancy between the channel input and output and would have
zero distortion. The function d(x, x,,,) therefore defines the crite-
rion for performance of the channel. The choice of a specific
distortion function can vary according to the application. However,
a common distortion function is the squared error difference be-
tween the channel input and output, d(x, x,,) = (x,, — X)>. This
choice of distortion function leads to a channel distortion D, given
by averaging over the joint distribution of x and x,:

D =E [d (x, Xou)]
= ff (xout - X)2 p(xoutlx) P(x) dxout dx. (@)

With an information rate (1) and distortion function (2) in place,
it is possible to characterize an optimal communication channel in
the following manner. For a fixed information rate R, one would
like to select, out of the space of all possible communication
channels with the specified rate, the one that achieves the smallest
possible distortion D. Alternatively, one may fix a criterion level
of performance and select the channel that achieves this perfor-
mance using the fewest bits, on average, to encode or transmit
information. Formally, the relationship between these two quanti-
ties is characterized by an equation known as a rate—distortion

function (Berger, 1971). This function provides the theoretical
bounds on performance for a fixed information capacity (the
smallest possible D for a given R) and, equivalently, a theoretical
minimum capacity R necessary to achieve a fixed level of perfor-
mance D. In particular, in this paper we will consider the case
where the information source consists of independent random
variables drawn from a stationary Gaussian distribution, and the
distortion function to be minimized is assumed to be the squared
error. In this case, it can be shown (Berger, 1971) that the optimal
rate—distortion function is given by

RD*l 0,1 o 3
( )—2max ,OgD ’ ()

where o refers to the variance of the Gaussian distribution.

This function is plotted in Figure 1 for a Gaussian information
source with arbitrary mean and unit variance. The information rate
is infinite at zero distortion, implying that perfectly transmitting
values from a continuous distribution would require an infinite
number of bits.? It should be emphasized that the rate—distortion
curve represents a theoretical bound on the performance of any
communication channel. No physical system can exist that
achieves a performance level D using fewer than R(D) bits, on
average, to encode or transmit information. This infeasible region
is indicated by the shaded area in Figure 1. As a direct conse-
quence of this fact, the rate—distortion curve can also be used as a
direct measure of the minimum capacity of any communication
channel. By measuring the distortion of an information transmis-
sion system, one can directly compute the minimum information
rate necessary to achieve this level of performance. If the channel
can be shown to transmit information at an average rate of R bits,
then it is also the case that the capacity of the channel must be =R
bits.

All of the properties and results in this section have been derived
for an abstract communication channel, without regard for the
physical implementation of that channel. However, the results
obtained hold equally true if the physical channel consists of a
fiber-optic cable, a pulsed laser, or a population of biological
neurons. Consequently, these results are equally applicable to
quantifying the performance of human visual working memory.
The next section explores the specific implications of the rate—
distortion framework for studying and understanding human visual
working memory.

An Ideal Observer Analysis of Human Visual Working
Memory

In this section we develop an ideal observer analysis (Geisler,
2003, 2011) of human visual working memory, building upon the
theoretical results presented in the previous section. Ideal observer
analysis is an approach to studying perceptual systems that pro-
ceeds by determining the theoretical upper bounds on perfor-

2 More surprisingly, the rate function reaches zero at the point D = o
This indicates that for a Gaussian random variable, achieving a distortion
of o2 does not require transmitting any information. In this case, the
receiver can simply guess that x is equal to the mean of the information
source p(x) without receiving any information, and this will, on average,
achieve a distortion equal to the variance of the source.
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Figure 1. Rate—distortion curve for a Gaussian information source and
squared error distortion criterion. The curve indicates the theoretical min-
imum information rate necessary to achieve a specified level of distortion.
The shaded region indicates the infeasible region: No physical system can
exist that achieves a performance level D using fewer than R(D) bits, on
average, to encode information.

mance, given uncertainty inherent in the environment, as well as
internal factors that limit information processing.

In the present case, two internal factors contribute to limiting
human performance. First, external information sources are cor-
rupted by sensory noise before entering memory. Second, it is
assumed that memory itself has a finite capacity but that memory
performs optimally subject to this capacity constraint.

A schematic illustration of the basic memory system is given in
Figure 2. As a running example, consider the task of comparing the
size of two apples that are sequentially examined. This task in-
volves looking at and remembering the size of the first apple and
then looking at a second apple and comparing its visual size to the
remembered size of the first apple. Following the notation of
Figure 2, we define the size of the first apple as x. All apples fall
into a typical range of sizes, which can be described by the
probability distribution p(x). For this example, we assume that the
size of apples can be described by a Gaussian distribution with
mean p,, and variance oﬁ,, Before we can store the size of a
particular apple in visual memory, it must be encoded by the
sensory system. It is known that the sensory encoding process is
both noisy and imperfect, resulting in a transformed signal x,
which can be described by the conditional distribution p(xlx) =
Normal (x, 02), where o defines the variance of the sensory noise.
This noisy sensory signal defines the input to VWM.

Our model assumes that the operation of visual working mem-
ory is defined by two processes: encoding (or storing) visual
features in memory and the subsequent retrieval (or decoding) of
the stored memory representations. The box labeled VWM in
Figure 2 corresponds to this encoding and decoding process. How
should the memory channel be designed in order to perform
optimally? Based on the results from rate—distortion theory pre-
sented in the previous section, it is known that for a given infor-
mation rate, there is a minimum achievable distortion. The ideal
observer analysis is therefore designed such that it achieves this
theoretical bound. Specifically, the memory encoding is defined as

X,, with a conditional distribution p(x lx,) = Normal (x,, (rg). The
magnitude of encoding noise is chosen such that the memory
channel achieves a specified information rate R (given in bits):

o2+ o’

0= R @
The supplemental materials provide a full derivation for this equa-
tion. Intuitively, when memory capacity is high (corresponding to
a large value of R), the magnitude of encoding noise will be small,
such that the memory encoding accurately reflects the sensory
representation of the apple’s size; when memory capacity is low,
the memory encoding x, will an unreliable indicator of x,.

As seen from Equation 4, for an optimal memory channel the
amount of corrupting noise depends not only on the information
rate but also on the variance of features in the environment (03,),
such that visual features with higher variance lead to noisier
memory representations. Intuitively, one can think of this effect as
the result of having to distribute a fixed capacity over a wider
range of possible feature values. Figure 3 plots the standard devi-
ation of encoding noise as a function of the information rate of
memory, for visual features with a low (solid line) or high (dashed
line) variance. For a fixed capacity, the amount of encoding noise
is predicted to increase with the variance of visual features in the
environment.

The decoding process is implemented as a Bayesian decoder
that infers the most probable (maximum a posteriori) estimate of
the original sensory signal, labeled as x,, in Figure 2. As shown in
the supplemental materials, the combination of a Gaussian noise
encoding and Bayesian decoder achieves the theoretical rate—
distortion bound, such that no alternative system could achieve a
lower distortion for a given information rate. In our example, this
means that memory minimizes the average squared error between

px) plxglx)
. x
Information - Sensory
source o signal
Xs
v VWM
Memory
encoding /
storage
Optimal
R Xe encoder &
X1 x,y, v decoder
Recovered m Memory
signal < decoding /
9 retrieval

Figure 2. A schematic diagram of the ideal observer model of visual
working memory (VWM). The information source is defined by a proba-
bility distribution, p(x), samples of which correspond to visual features to
be stored in VWM. Before entering memory, the signal is encoded via the
sensory system, resulting in the (noisy) sensory signal x,. This signal is
stored and then retrieved from VWM in an optimal manner, subject to a
capacity limit. The output of memory, x,, represents the optimal estimate
of the incoming sensory signal subject to the capacity constraint. A final
decoder is then used to infer the optimal estimate of x, labeled as £.



812 SIMS, JACOBS, AND KNILL

g T
\ Signal SD
\\ — 15
o | \ - =-60
®
[a)
7]
[0}
(%]
©
€ o |
o
f=
£
o
o
C
L o |
o

Information rate (bits)

Figure 3. Standard deviation (SD) of corrupting noise added to sensory
signals that are stored in VWM, as a function of the information rate of
memory (measured in bits) and variance of the features in the environment.
This figure assumes a constant level of sensory noise, set to SD = 5, close
to the value obtained in fitting the model to empirical data from the
orientation experiment (see the Appendix). VWM= visual working mem-
ory.

the sensory size of an apple and its remembered size, subject to a
constraint on the information rate. A squared-error cost function
has previously been found to approximate the biological cost
function on motor error (Kording & Wolpert, 2004) and therefore
is a reasonable first choice for characterizing the biological cost on
memory error. Note that the assumption that memory attempts to
minimize squared error is subsequent to the fact that a given
amount of capacity (R) has been allocated to encoding that partic-
ular item; the question of how capacity is divided between multiple
items in a visual scene is a separate issue, which we return to later.

So far, it was shown that the output of VWM represents the most
accurate reconstruction of its sensory input, subject to a finite
information rate limit. For an individual performing a particular
task, the true feature value, x, may be of more importance than its
noisy sensory encoding x,. If the individual possesses knowledge
of the statistics of the information source and the noise character-
istics of its sensory system, it is straightforward to extend the
model to compute a minimum mean-square error (MMSE) esti-
mate of x given the memory signal x,,. In particular, the MMSE
estimate X is given by

A MWGE + xi?’l()-fv'
XY= (&)
o, + o}
This equation can also be interpreted in terms of an optimal
Bayesian inference: The best estimate of the visual feature is given
by a weighted combination of the prior distribution (with mean
w,,) and the information available from memory (x,,,).

Returning to our running example, the value % represents the
best possible estimate of the size of a particular apple, where the
size was stored in a limited-capacity visual working memory
system. To compare the size of two apples, the individual can sim-
ply compare this optimal memory estimate to the (noisy) sensory
signal corresponding to the size of the comparison apple.

As we have shown, the ideal observer analysis generates the
direct prediction that as the variance of features in the environment
increases, the precision of memory should decrease. However, so
far the analysis has been limited to the case where only a single
item must be stored in visual working memory. This leaves open
the question of how memory stores multiple visual features simul-
taneously. For example, consider the task of remembering the sizes
of six apples. In this case, is a single memory capacity divided
among each apple, such that each is encoded with R/6 bits? Or are
there independent memory capacities for each item stored? Is it
even preferable to encode all six apples, perhaps with decreased
precision, or should we instead focus our limited resources on a
small subset of items?

There is no universally optimal solution to this trade-off, and it
is possible to construct tasks with different performance demands
where different allocation strategies are optimal. Our approach is
therefore to examine a family of related models, all linked by the
common framework of rate—distortion theory but differing in their
assumptions of how memory capacity is divided and distributed
among multiple items. One of the models considered is optimal for
the particular experiments reported in this paper, but it may be
suboptimal in tasks more closely matching the demands of the
natural environment. However, each model is optimally efficient
in the sense of minimizing the squared error in memory represen-
tations, subject to the constraints of a fixed information rate and a
particular encoding strategy.

In the next section, we report an experimental test of the
predictions derived from different models developed on the basis
of the ideal observer analysis. To preview our results, we find that
performance is best explained not by a fixed item limit, nor by the
assumption that subjects encode all stimulus items. Instead, the
results favor a model according to which there is trial-to-trial
variability in the number of items stored in visual working mem-
ory, without imposing an upper limit on the number of stored
items.

Experiments

In this section we describe two experiments conducted to eval-
uate the predictions of the ideal observer analysis of visual work-
ing memory. The two experiments differed in terms of the visual
feature that subjects had to store in VWM. In one experiment,
subjects were tested on their memory for the angular orientation of
arrows; in the other experiment, subjects were tested on their
memory for the length of line segments. In both experiments, we
manipulated the set size (number of items in the display) as well as
the variance of the distribution over features. On the basis of the
theoretical results derived in the previous section, we predict that
in conditions with high variance over features, memory perfor-
mance should degrade. However, the ideal observer analysis does
not uniquely predict how performance should drop, for example,
whether subjects will encode fewer items with higher precision or
a constant number of items but with lower precision. Thus, a
further purpose in the experiments is to empirically address this
question. Because the two experiments used a similar procedure,
the experiments are described together.
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Method

Subjects. Twenty-eight volunteers from the University of
Rochester participated in the two experiments (14 subjects in each
experiment). All subjects had normal or corrected-to-normal vi-
sion.

Apparatus. Subjects were seated 40 cm from a flat-screen
20-in. (diagonal measure) CRT monitor set to a resolution of
1,280 X 1,024 pixels. Subjects’ heads were kept in a fixed location
relative to the monitor using a chin rest. During the experiment,
subjects also wore a head-mounted eye tracker (EyeLink II; SR
Research) that recorded gaze position at 250 Hz. The experimental
software was written to ensure that subjects maintained stable
fixation on a central cross for the duration of each trial. Trials in
which eye movements were detected were discarded and repeated
during the experiment.

Procedure. For the orientation experiment, at the start of each
trial, subjects were shown a screen containing an array of eight
small circles evenly spaced and equidistant from a central fixation
cross (see Figure 4a). The circles were located 4 cm from the
fixation point, resulting in an eccentricity of ~5.5 degrees of
visual angle. Subjects were instructed to maintain steady fixation
on the fixation cross for the duration of each trial. After 250 ms, a
stimulus array was displayed (Figure 4b). This display consisted of
a varying number of colored arrows (length = 1.75 cm), each
arrow presented inside one of the small circles. The arrows were
shown at random angular orientations drawn from a Gaussian
distribution.® The mean orientation of the arrows was zero degrees
(defined as pointing to the top of the display). On different trials,
the number of arrows varied, using set sizes of n = 1, 2, 4, or 8
items. The trial order of the different set sizes was randomized
subject to the constraint that each condition was presented an equal
number of times. The arrows were uniquely colored and presented
against a gray background, using the set (red, orange, yellow,
green, blue, purple, brown, and white). The mapping of colors to
locations was randomly determined for each subject but remained
constant across trials. Subjects were instructed to memorize the
orientation of each arrow. This stimulus presentation duration
lasted for 500 ms, after which the display was blanked for an
interval lasting 500 ms.

After the memory retention interval, subjects were shown a
display containing just one of the original arrows (see Figure 4c).
The orientation of this arrow was always different from its previ-
ous orientation and on different trials was perturbed by an amount
drawn from the set {—40, —20, —10, —2.5, +2.5, +10, +20, or
+40} degrees, where positive perturbations correspond to rotating
the arrow clockwise. The task for the subject was to decide
whether the arrow had been rotated clockwise or counterclockwise
relative to its previous orientation. Subjects responded by pressing
one of two keys on a standard keyboard, depending on the direc-
tion of the perturbation. Subjects were then given feedback regard-
ing the correctness of their choice.

The variance of the Gaussian distribution governing the orien-
tation of the arrows was manipulated as a within-subject condition.
Subjects completed four sessions of the experiment on separate
days. On two consecutive days (either the first two or the last two),
the arrows were drawn from a Gaussian distribution with low
variance (SD = 15 degrees). On the other two sessions the Gauss-
ian distribution used a high variance (SD = 60 degrees). The order

of the two variance conditions was counterbalanced across sub-
jects.

In a separate experiment, subjects were tested on their memory
for the length of line segments. In the line length experiment, the
initial display consisted of a single large circle (radius = 5 cm) and
a fixation cross located at the center of the screen (see Figure 4d).
After 250 ms, a stimulus array was shown. The stimuli consisted
of colored line segments of varying lengths (width = 0.5 cm),
presented so that the midpoint of each line segment was located on
the circle, and the line segments were oriented in a radial fashion
(see Figure 4e). As with the orientation experiment, on different
trials the set size varied, in the range of n = 1, 2, 4, or 8 items. On
a given trial the locations for the midpoints of the line segments
were randomly selected from a fixed set of eight possible locations
evenly spaced around the circle. The set of colors for the line
segments was the same as for the orientation experiment.

After a 500-ms presentation interval, the screen was blanked for
500 ms. Subjects were then shown a single line segment, chosen
randomly from the original set (see Figure 4f). The length of this
line segment was perturbed, by an amount drawn from the set { —1,
—0.5, —0.25, —0.075, +0.075, +0.25, +0.5, or +1} cm. Subjects
had to report whether the line segment was longer or shorter
relative to its original length.

The lengths of the line segments were drawn from a log-normal
distribution. A log-normal distribution is a continuous probabil-
ity distribution where the logarithm of its samples follows a
Gaussian distribution with a given mean and variance. A log-
normal distribution was used for this experiment, as it is known
that perceptual discriminability of line length is proportional to
length (Tudusciuc & Nieder, 2010), indicating a logarithmic rela-
tionship between physical and perceived stimulus magnitude (as
follows from the Weber—Fechner law). By defining a log-normal
distribution over stimulus features, the resulting distribution of
perceived line lengths can reasonably be assumed to follow a
Gaussian distribution, simplifying the model analysis. The mean
parameter of the log-normal distribution was 1.18 (log-
transformed value; this results in a mean physical line length of
~3.3 cm). The standard deviation parameter was manipulated as a
within-subject condition. During two consecutive sessions, the
standard deviation was 0.0748 (low-variance condition), and in the
other two sessions the standard deviation was four times as high
(high-variance condition, SD = 0.299). The order of the variance
conditions was counterbalanced across subjects.

For both experiments, subjects completed 56 trials in each of 64
conditions (4 set sizes X 8 perturbation magnitudes X 2 variance
conditions), for a total of 3,584 trials per subject over the course of
four 1-hr sessions conducted on separate days.

Results

Figure 5 plots the proportion of trials answered correctly as a
function of set size and signal variance condition. A 2 X 4

3 For features with a circular distribution, a Von Mises distribution may
be more appropriate in general. However, a Gaussian distribution was
deliberately used for this experiment to maintain consistency with the ideal
observer analysis. An equivalent ideal observer model could instead be
derived for the case of Von Mises distributed features, but the resulting
mathematics are rather more complicated.
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Figure 4.

Tlustration of the experimental stimuli. (a—c): Orientation experiment. (d—f): Line length experiment.

(a) Subjects were shown an array of eight small circles, evenly spaced and equidistant from a central fixation
point. (b) A varying number of colored oriented arrows were presented for 500 ms. (c) After a 500-ms blank
retention interval, subjects were shown a display containing just one of the original arrows. Subjects were asked
to decide if the colored arrow had been rotated clockwise or counterclockwise from its previous orientation. For
the line length experiment (d—f), the task was similar, except subjects memorized the length of colored line
segments and were asked to decide if the probe item had been increased or decreased in length relative to its

previous size.

(variance X set size condition) repeated-measures analysis of
variance was conducted in order to determine whether perfor-
mance varied across different conditions of each experiment. For
the orientation experiment, analysis of variance indicated a signif-
icant main effect of set size (F339, = 171.79, p < .001), with
performance decreasing as the set size increased. The main effect
of variance condition was also significant (F(, ;5, = 162.85, p <
.001), with performance worse in the high-variance conditions of
experiment. The interaction effect was also significant (F 3 39, =
48.14, p < .001), due to the fact that performance decreased more
with increasing set size in the high-variance condition, compared
to the low-variance condition. The results for the line length
experiment followed a similar pattern. Both the main effect of set
size (F3 39, = 60.027, p < .001) and that of variance condition
(F(1.13) = 88.7, p < .001) were found to be significant, as well as
the interaction of set size and variance condition (F5 59, = 12.081,
p < .001).

The empirical results support the prediction that performance
should be worse in the high-variance conditions of the experi-
ments. However, in comparing performance in the low- and high-
variance conditions, it is necessary to rule out several alternative
explanations, unrelated to an information-theoretic account, that

may also account for the decrease in performance under high-
stimulus variance conditions. In both experiments, stimuli in the
high-variance condition were farther from the mean value, on
average, than were those the low-variance condition. For judgment
of line length, it is known that longer stimuli are harder to dis-
criminate (Tudusciuc & Nieder, 2010), and the same may hold true
for the orientation experiment if subjects coded the stimuli in terms
of their angular distance from the mean orientation. Therefore,
performance might be expected to be worse in the high-variance
condition because of poorer sensory discrimination and not be-
cause of a limited-capacity memory system.

To address this possible confound, a subset of trials was ex-
tracted from the high-variance condition in which the distribution
of line lengths or orientations for the tested items was perfectly
matched to the distribution of features in the low-variance condi-
tion.* When performance of the low-variance trials and the sub-
sampled high-variance trials is compared, a perceptual discrimi-
nation account no longer predicts any performance difference (as

*This was achieved using a technique known as rejection sampling

(Gilks, Richardson, & Spiegelhalter, 1996).
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Figure 5. Proportion of trials answered correctly as a function of set size and variance condition. The left plot
shows data from the orientation experiment, and the right plot is from the line length experiment. Each plot also
shows the performance on a randomly selected subset of trials from the high-variance condition (plotted using
diagonally shaded bars), chosen to exactly match the stimulus distribution of the low-variance condition. (See
text for details.) Error bars correspond to 95% confidence intervals around the mean proportion correct.

the two conditions have an identical distribution of feature values).
However, the ideal observer analysis still predicts that perfor-
mance should be worse on the subsampled high-variance trials
than in the true low-variance condition. The intuition for this is in
adapting the memory system to encoding higher variance features,
the same fixed capacity must allow for coding stimuli over a wider
range of values, leaving lower precision for any individual stim-
ulus item. As a result, the information-theoretic account predicts
that performance should be worse even when examining a low-
variance subsample of the high-variance condition.

The diagonally shaded bars in Figure 5 show the mean propor-
tion correct in each set size condition for a low-variance subsample
from the high-variance condition. As predicted by the information-
theoretic account, performance on these subsampled trials is sig-
nificantly worse than in the low-variance condition for the orien-
tation experiments (F, ;3, = 51.581, p < .001) and line length
experiments (F, ;3 = 38.395, p < .001). Hence, the lower per-
formance in the high-variance condition cannot be attributed to
any perceptual properties of the task unique to the high-variance
condition.

In both experiments, the probe items were obtained by adding
positive or negative perturbations to features drawn from proba-
bility distributions with fixed variance. Because of this property,
subjects could guess at above-chance levels by adopting the fol-
lowing strategy: If the orientation or line length of the probe item
is greater than the mean value, report a positive perturbation. The
logic of this strategy is that probe items with feature values greater
than the mean are more likely to have been perturbed positively
than negatively. This strategy would be expected to be more
successful in the low-variance condition (although still well below
empirically observed performance), because large positive or neg-
ative perturbations would be more distinguishable from random
trial-to-trial variation in the low-variance condition than the high-
variance condition. However, the empirical data render an account
based solely on this guessing strategy unlikely. Existing item-limit
models of visual memory generally assume that the limit is at
least two items. Hence, these models predict that it is unlikely
that responses in the low-set-size conditions (one or two items)
reflect guesses made by subjects. Therefore, a guessing explana-

tion predicts no performance difference between variance condi-
tions at low set sizes, and the information-theoretic account still
predicts a performance decrement in the high-variance condition.
Consistent with the information-theoretic account, performance
was worse in the high-variance condition at set sizes of one and
two items; statistical test results are given in Table 1.

It remains possible that the difference in performance between
the two variance conditions is due to subjects adopting different
response strategies in the two conditions. However, the design of
the present experiments, as well as the results obtained, renders
any explanation for the variance effect based solely on strategy
difference in the two conditions unlikely. First, all subjects com-
pleted both variance conditions, so if subjects adopted a particular
suboptimal strategy in one session, it would likely carry over to
their performance in subsequent sessions. Second, given that hu-
man performance conforms to the predictions of a limited-capacity
but optimal memory system, if subjects in fact adopted suboptimal
or heuristic decision strategies in the different variance conditions,
it seems inescapable that these strategies would have to at least
approximate the behavior of a near-optimal memory system.

Figure 6 shows the proportion of test items judged as positively
perturbed as a function of the perturbation added to the feature
value. Positive values correspond to clockwise perturbations in the

Table 1

Statistical Comparison of Proportion of Trials Correct in the
Low Versus High Variance Condition of Each Experiment at
Low Set Sizes

Experiment and set size Mean difference t p
Orientation
N=1 0.035 335" .005
N=2 0.074 7.647 <.001
Line length
N=1 0.057 3.9" .002
N=2 0.070 8.32""" <.001
Note. All tests reported are two-sided paired 7 tests with 13 degrees of
freedom.
p<.0l. Tp<.001.
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Figure 6. Proportion of trials judged as perturbed positively as a function of true perturbation, for each
condition of the experiment. Human data are indicated by black marker points; error bars indicate 95%
confidence intervals. The smooth curves show the predictions of the flexible encoding model. (a) Data from the

position experiment. (b) Data from the orientation experiment. Var. = variance.

orientation experiment and increases in length for the line length
experiment. Data are plotted separately for each set size (varying
across columns) and signal variance condition (varying across
rows). As expected, the probability of judging the perturbation to
be positive increased in monotonic fashion with the actual pertur-
bation. However, less obvious is how response probability should
vary with increasing set size or feature variance. To achieve a more
fine-grained assessment of human performance, we fit to the data
psychometric functions that assume that the empirical data consist
of a mixture of two response types: trials where the probed item
was stored in memory and response probability is assumed to
follow a cumulative Gaussian function of perturbation magnitude
and trials where the probed item was not stored and responses are
made randomly. The key parameters of the psychometric function
are the proportion of random responses and the slope of the

Gaussian cumulative function evaluated at threshold (where
threshold is defined as the perturbation magnitude resulting in a
50% probability of reporting a positive perturbation).

These parameters of psychometric performance have been
closely scrutinized for evidence regarding the existence of item
limits in visual working memory (D. E. Anderson et al., 2011;
Bays et al., 2009; Cowan & Rouder, 2009; Thiele, Pratte, &
Rouder, 2011; Zhang & Luck, 2008). Changes in the slope of the
psychometric function indicate changes in the precision with
which items are stored in VWM therefore, by examining how the
psychometric slope changes across set sizes it is possible to ex-
amine the effect of storing more items on the precision of each
memory representation. Existing item-limit models predict that the
psychometric slope should reach a plateau and remain constant
once the set size exceeds the available number of slots in visual
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working memory. Beyond the item limit, increasing the set size
should not influence the precision with which items are stored but
rather only impact the probability that the probe item was encoded
during stimulus presentation. The continuous resource model, on
the other hand, predicts that precision should monotonically de-
crease with increasing set size. Further, because all items are
assumed to be encoded, the continuous resource model predicts
that the lapse rate should equal zero for all set sizes. However, it
has been demonstrated that estimated lapse rates can be nearly zero
when the experimental design allows subjects to make educated
guesses, even if not all items were encoded in memory (Thiele et
al., 2011). Consequently, finding a low estimated lapse rate does
not decisively rule out item-limit models.

We estimated parameters of the psychometric function using a
hierarchical Bayesian model. Bayesian inference proceeds by plac-
ing prior distributions over each parameter and inferring posterior
probability distributions from the available data. In a typical (non-
hierarchical) analysis, each subject is assumed to be independent;
therefore, the parameter estimates for one subject do not inform the
estimates for other subjects. A hierarchical model extends this
approach by assuming that the variability between subjects is
structured: The distribution of subject-specific parameters is as-
sumed to follow a population-level distribution. This dependency
structure increases statistical power and reduces the influence of
outliers in parameter estimation (Morey, 2011; Rouder, Sun,
Speckman, Lu, & Zhou, 2003) and can be a valuable tool for
investigating individual differences among subjects (Navarro,
Griffiths, Steyvers, & Lee, 2006). A tutorial introduction to hier-
archical Bayesian models as applied to psychological research can
be found in Rouder and Lu (2005). Implementation details of the
psychometric function and parameter estimation are provided in
the supplemental materials.

Figure 7 plots the estimated mean psychometric slope and lapse
rate parameters. For both experiments, the slope is lower in the
high-variance condition—this indicates that increasing the vari-
ance of features in the environment led to a decrease in the
precision of memory representations. Additionally, the precision
of memory representations decreased with increasing set size. It is
also noteworthy that the results contain aspects that are partially
inconsistent with both continuous resource and item-limit models
of visual working memory. In the orientation experiment, the
psychometric slope decreased from set size 4 to set size § in both
variance conditions.’ This finding is inconsistent with item-limit
models that assume that subjects can encode a maximum of 3—4
items (the typical item limit reported, though individuals may
exhibit variation in item capacity; Rouder et al., 2008; Vogel &
Machizawa, 2004). Increasing the set size beyond the item limit
should have no effect on the precision of memory representations
and should therefore not affect the slope of the psychometric
function. At the same time, the results are inconsistent with the
continuous resource model, because the high-variance condition of
the orientation experiment shows that the psychometric lapse rate
increases at large set sizes. In the line length experiment, there was
no evidence for a decrease in slope beyond a set size of 4 items,
and the estimated lapse rate was near zero for all conditions.

For the largest set size and high-variance conditions of both
experiments, the estimated slope parameters were found to be
highly correlated with the corresponding lapse rate parameters. In
other words, when the psychometric function is nearly flat, the

empirical data do not unambiguously resolve both parameters. For
the line length experiment, the correlation between slope and lapse
rate was > = 0.73 (set size 8, high-variance condition), and in the
orientation experiment the correlation was r* = 0.65. Model-
fitting techniques that produce only a single set of best fitting
parameters (e.g., the procedure reported in Zhang & Luck, 2008,
and D. E. Anderson et al., 2011) fail to account for these correla-
tions and may potentially give misleading conclusions. However,
as a Bayesian analysis provides a joint posterior distribution over
both parameters, taking into account uncertainty in their values,
the conclusions drawn with respect to the decrease in slope remain
valid, regardless of the correlation with the lapse parameter.

A further property of the ideal observer model is that it predicts
that memory representations should be biased. Because memory
retrieval is assumed to be a process of decoding a noise-corrupted
representation, the optimal Bayesian solution is to combine the
noisy memory information available on a given trial with prior
knowledge of the statistics of the relevant visual feature. As a
result, the ideal observer model predicts that memory representa-
tions should be biased toward the mean feature value, and previous
experiments have also demonstrated the existence of biased mem-
ory representations (Brady & Alvarez, 2011). However, the
amount of bias should also depend on the actual stimulus on a
given trial: Visual features that are outliers (farther from the mean
value) should be more strongly biased in absolute terms than
features that are more typical (closer to the mean). This implies
that when tested on a line segment (in the line length experiment)
that was initially much longer than average, the subject should be
more likely to report that the probe stimulus was increased in
length rather than decreased.

Additionally, the amount of bias might also depend on the
number of items that are concurrently stored in memory. When
many items are encoded, fewer resources may be allocated to each
item, and therefore the encoding process would be expected to
introduce more noise into the representation. In this case, the
optimal Bayesian solution is to give more weight to the prior
distribution over features. As a result, the ideal observer model
predicts that memory representations should be more strongly
biased in the high-set-size conditions, where more items are likely
to be encoded simultaneously. The predicted effects of feature
variance on bias are less straightforward: With higher feature
variance, the prior distribution is less informative; on this basis one
would expect a smaller amount of bias. However, memory repre-
sentations are also less precise in the high-variance condition,
leading to an increased reliance on the prior. These two factors
counterbalance each other, and therefore the model does not make
a clear-cut prediction regarding the amount of bias in the two
variance conditions of the experiment (further details are given in
the supplemental materials).

To investigate the extent to which VWM was biased in the
experiments, we binned the response data according to the initial
feature value (orientation or line length) of the to-be-tested stim-
ulus item into 10 equal quantiles. This binning procedure was

5 The change in slope was verified by determining the 95% credible
interval for the difference in slope between conditions: When the credible
interval for this difference excludes zero, the hypothesis that the slope did
not change is rejected.
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(a) Parameters of the psychometric function fit to empirical data (solid lines) and model-generated

data (dashed lines) from the orientation experiment. Left panel: Estimated slope of the psychometric function.
Right panel: Estimated psychometric lapse rate. (b) Corresponding parameter estimates for the line length
experiment. Model data are generated from the flexible encoding model. All error bars indicate 95% highest

density credible intervals.

performed separately for each set size and variance condition. The
estimated response bias for a subject in a particular stimulus
quantile, set size, and variance condition was computed as

1 o —
Response bias =y > [Z,- - Z(Af)], (6)
i=1

where N is the number of trials in which the initial orientation or
line length falls into the current quantile, and Z, is the binary
response (1 or 0) indicating whether the subject reported a positive
perturbation on on trial i. The variable A, is the actual perturbation

level on trial i, and Z indicates the average proportion of trials
in which the subject reported a positive perturbation when the
perturbation level was A,, with the average computed across all set
sizes, variance conditions, and initial feature values. This measure
of bias effectively subtracts out the effect of the perturbation on
response probability, to focus directly on the effect of the initial
feature value, set size, and variance condition on the tendency to
report a positive perturbation. According to this measure, positive
values of bias indicate an exaggerated tendency to report a positive
perturbation, relative to the average for that subject when com-
puted across all set sizes and variance conditions.

If VWM is unbiased, the estimated response bias should be zero
for all conditions, regardless of line length or orientation. By

contrast, the ideal observer model predicts that bias should in-
crease as stimuli are more distant from the mean value. Further, if
the amount of memory resources allocated to each item depends on
the number of items in a scene (as assumed by both the continuous
resource model and the slots+averaging model), the magnitude of
the bias should increase with increasing set size. The results of this
analysis are shown in Figure 8, where the data have been binned
into 10 equal quantiles according to the initial feature value of the
tested item. It is apparent from the figure that response bias
strongly depends on the magnitude of the visual feature but also
depends strongly on the set size condition. Both effects are directly
predicted by an optimal memory system that attempts to accurately
store visual features in the presence of encoding noise.

In summary, the empirical results support several key predic-
tions of the ideal observer analysis. First, it was shown that
performance decreased as the variance of features in the environ-
ment increased. This predicted change in performance is a funda-
mental consequence of results derived from rate—distortion theory
but is not predicted by existing models of visual working memory.
The results also demonstrated that memory representations appear
to be biased in a manner predicted by the ideal observer analysis.
Such biases are the hallmark of a system that is appropriately
adapted to the statistics of features in the environment. Finally, the
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Figure 8. Relative response bias, defined as the tendency to report a positive perturbation, as a function of the
initial feature value of the to-be-tested item, set size, and variance condition. Feature values are binned into 10
equal quantiles (deciles), and response bias is computed separately for each subject, quantile, and experimental
condition (set size and feature variance). (a) Data from the orientation experiment. (b) Data from the line length
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experiment. Error bars indicate 95% confidence intervals, averaging across subjects.

estimated parameters of the psychometric function produced re-
sults at least partially inconsistent with both item limit and con-
tinuous resource models. In the next section, we compare several
models developed within the framework of the ideal observer
analysis to determine which most accurately accounts for the
specific pattern of results obtained in the two experiments.

Ideal Observer Analysis Applied to Empirical Data

In order to generate quantitative predictions for the data from
the experiments, it is necessary to specify how items are selected
to be encoded in visual working memory (for example, whether
there is a fixed item limit and how capacity is divided among
encoded items). Rather than defining a single model, the ideal
observer analysis instead serves as the theoretical foundation for a
family of related models. Each of the models in this family is
linked through its use of rate—distortion theory to predict optimal
performance for a given total information capacity and allocation
of that capacity among items. In this section, we also consider the
ability of two non-information-theoretic models—existing ver-
sions of the continuous resource (Bays & Husain, 2008; Wilken &
Ma, 2004) and slots+averaging (Cowan & Rouder, 2009; Zhang
& Luck, 2008) models—to account for the empirical data.

Information-Theoretic Models

For all models considered in this section, the response on each
trial (assuming the probe item was encoded in memory) is obtained

by comparing the sensory-noise-corrupted probe stimulus to the
memory estimate of the original item. If y, is the sensory obser-
vation of the probe stimulus, and % is the optimal memory recon-
struction computed according to Equation 5, then the decision rule
is simply

+. (y,—%)>0,
Decision = Y (@)
(<0,

where + is a response indicating a positive perturbation (clock-
wise in the orientation experiment or longer in the line length
experiment). The supplementary materials provide a proof that this
is the optimal decision rule for the psychophysical experiments.
Although all models adopt this decision rule, it is possible to define
models that differ in terms of how many items are encoded and
how memory capacity is divided among encoded items.
Information-theoretic continuous resource model. If mem-
ory capacity is given by R bits and there are n items to store in
VWM, a simple approach would be to store all » items, encoding
each with an information rate of R/n bits. As is shown later, this is
also the optimal allocation strategy for the particular experiments
reported here. This model predicts that as the number of items
stored in memory increases, the precision with which each item
is encoded will necessarily decrease. This would correspond to an
information-theoretic reinterpretation of a continuous resource
model (Bays & Husain, 2008; Palmer, 1990; Wilken & Ma, 2004),
which evenly distributes a continuous pool of resources among all
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visual features in a scene. However, rather than being abstractly
specified, the notion of a shared resource is now precisely defined
in terms of bits of capacity. This allows the model to predict
absolute levels of performance, whereas existing instantiations of
the continuous resource model can only predict relative perfor-
mance across different set sizes. Further, the information-theoretic
implementation of the model allows it to directly predict perfor-
mance differences between the two variance conditions of the
experiments, whereas existing formulations of this model would
predict no effect of feature variance on performance.

Information-theoretic slots+averaging model. An alterna-
tive possibility is that the visual working memory system encodes
only a limited subset of items. Many existing theories of visual
working memory assume that there is an upper limit of ~3-4
items that can be stored simultaneously (e.g., Cowan, 2001). Such
a model can be implemented in the rate—distortion framework by
assuming that there are separate distinct slots, each with a capacity
of R bits, where R is independent of the number of items stored.
Once all the available slots are filled, no additional items are
encoded. The slots+averaging model (Cowan & Rouder, 2009;
Zhang & Luck, 2008) is a recent theory of visual working memory
that similarly assumes an item limit but allows any unused slots to
“double up,” so that multiple slots may encode the same item. We
derived an information-theoretic version of this model by assum-
ing that each encoded item receives j X R bits of capacity, where
Jj is the number of slots assigned to that particular item and R is the
information capacity of a single slot. For example, if an item is
stored in two slots, then it is encoded with 2 X R bits. According
to this model, if a scene contains more objects than available slots,
each slot encodes a unique object. If the scene contains fewer
objects than available slots, each object is encoded in one slot, and
the remaining slots are randomly assigned to objects, so that there
is a chance that the same object may be encoded in two or more
slots.

The information-theoretic slots+averaging model has two dis-
tinct advantages over standard (non-information-theoretic) item-
limit models. First, the information-theoretic model is able to
quantity, in task-independent fashion, the precision with which a
single slot can represent an object or visual feature. Note that
though existing discrete slot models are largely silent on the issue
of capacity limits for individual slots, rate—distortion theory makes
transparent that such limits must necessarily exist and further
enables a means of estimating this capacity. If human performance
is only weakly constrained by the capacity limits of individual
slots, the information-theoretic discrete slot model would be able
to reveal this as well. Second, the information-theoretic implemen-
tation predicts that memory precision for stored items should be
worse in the high-variance condition, even assuming a constant
number of slots and fixed storage capacity per slot. To account for
the effects of the variance manipulation, existing item-limit models
would need to postulate an additional constraint or mechanism.

Stochastic encoding models. Although the slots+averaging
model allows unused slots to be randomly assigned to objects in a
scene, resulting in higher precision encodings of some items, the
model in its simplest form still assumes that the total number of
items encoded on each trial is fixed and deterministic. Previous
discussions of item-limit models have raised the possibility that
there is some amount of trial-to-trial variability in the number of
items encoded (e.g., Luck, 2008, p. 56; Vogel et al., 2001), but

they have not attempted to estimate the magnitude of variability
present in behavioral data for individual subjects. However, infer-
ring the magnitude of this variability is critical in evaluating
whether there is a strong upper limit on the number of items that
can be maintained in VWM. For example, it is possible that VWM
has a capacity limit of 8 items, but on each trial individuals encode
some random number of items between O and 8, chosen equally
often. In this case, an item-limit model fit to such a data set would
lead to an estimated item limit of 4 items (the average number
encoded), when in fact the true item limit is twice as high.
Similarly, it is also possible for the average number of encoded
items to be in the range of 3—4, without requiring any upper limit
in VWM.

Because of this potential confound, it is necessary to consider
encoding models where there is an explicit probability distribution
over the number of items encoded in memory, rather than estimat-
ing only the average number of items stored. By directly estimat-
ing encoding variability, it is possible to assess the strength of
evidence for an upper limit on VWM representations. A simple
model in this family is one that assumes that there is a constant
probability of encoding each additional item; this leads to a bino-
mial distribution over the number of encoded items on a given
trial. In the present implementation, we allow for the possibility
that this encoding probability differs across set size and variance
conditions of the experiment. This model—referred to as the
binomial encoding model—requires estimating one parameter (the
encoding probability) of the binomial distribution in each condi-
tion. Although this model allows for trial-to-trial variability in
encoding, it does not require an upper limit on the number of items
that can simultaneously be stored. On trials where more items are
encoded, a central shared capacity is divided more thinly among
each item.

The binomial encoding model allows considerable variability in
the number of items encoded. However, it still assumes that the
distribution over the number of encoded items follows a particular
parametric form (i.e., a binomial distribution). Therefore, we also
consider a model in which the distribution over the number of
encoded items is completely unconstrained. That is to say, we treat
the probabilities of encoding 0 . . . n items in each condition as free
parameters to be estimated from the data. This “flexible encoding”
model includes as special cases both the discrete item-limit and the
continuous resource models. For example, a discrete item-limit
model predicts that subjects always encode 4 items (assuming a set
size = 4 items). This is captured by an encoding distribution that
selects 4 items with probability 1, assigning O probability to the
possibility of encoding more or fewer items. Similarly, the con-
tinuous resource model predicts that individuals encode all stim-
ulus items in the display with probability 1. Thus, both encoding
mechanisms are special cases of the flexible encoding model. By
considering a model flexible enough to encompass a range of
possibilities, it is possible to gain insight as to the properties of
VWM by examining the resulting parameter estimates from the
model. For both the binomial model and the flexible encoding
model, we assume that the capacity is evenly divided among all
encoded items, so that if there are n items encoded on a particular
trial and R bits of total capacity, each encoded item receives R/n
bits of capacity.

Both the flexible encoding model and the binomial encoding
model represent possible instantiations of the hypothesis that en-
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coding variability plays a significant role in human VWM perfor-
mance. Further, both models allow for trial-to-trial variability in
the number of encoded items without assuming an upper item limit
on storage. It is possible to imagine a number of other plausible
models in this family. However, our primary concern lies in
estimating the relative magnitude of encoding variability in VWM
performance in comparison to existing item limit and continuous
resource models, which assume a comparatively minimal role for
encoding variability.

Decision Rule When the Probe Item Was Not Encoded
in Memory

For all of the models except the continuous resource model, an
additional detail must be specified regarding how responses are
generated on trials when the probed item was not encoded during
the initial stimulus presentation (the continuous resource model
assumes that all items are encoded on each trial). If an item was not
encoded in memory, subjects could simply guess if tested on that
item. However, the design of the experiments allows subjects to
make above-chance guesses based purely on the statistics of the
probe stimulus. To account for this possibility, if tested on an item
not encoded in memory, the models computed the probability of a
positive or negative perturbation based solely on the probe stim-
ulus and knowledge of the task (the discrete perturbation levels
and the mean and variance of the feature values). We define P(A >
Oly,) as the probability that a probe item was perturbed positively,
given only the observation of the probe stimulus (the equation for
computing this is provided in the supplemental materials). The
“optimal guessing strategy” is to respond that a positive perturba-
tion occurred whenever P(A > Oly,) > 0.5. For the present exper-
iments, this occurs whenever y;, is perceived to be greater than the
mean orientation or line length over visual features. This leads to
the optimal guessing strategy

+, (yx - p“w) >0,
Decision = (8)
{—,(x—uw<0

The similarity between Equations 8 and 7 reveals that the optimal
guessing strategy is in fact a limiting case of the ideal observer
model when memory capacity is reduced to zero. In this case, the
optimal memory estimate X is simply the mean of the distribution
over features, w,,.

Individual subjects in the experiment may differ in terms of their
use of this guessing strategy. It is also possible that subjects may
probability match (Myers, 1976): If the probability that the probe
item was perturbed positively is 0.7, a probability matching subject
will respond with a positive perturbation only 70% of the time. To
account for these possibilities, the probability of reporting a pos-
itive perturbation on trials when the probe item was not encoded is
modeled as

P(A>0ly,)"

PN = B A= 00" + [1 = P = 0y

(C))

The parameter s controls the extent to which subjects make
educated guesses: When ¢ = 0, guesses are made completely
randomly; when {s = 1, probability matches results, and as i — oo,
the subject approaches optimal guessing performance.

Non-Information-Theoretic Models

We also evaluated non-information-theoretic versions of the
continuous resource and slots+averaging models. For the non-
information-theoretic continuous resource model, memory repre-
sentations are corrupted by Gaussian noise, where the standard
deviation of the noise varies as a general power function of the set
size. The exponent of the power function represents an additional
free parameter in this model, compared to its information-theoretic
equivalent. To maintain consistency with the information-theoretic
version, we also included a sensory noise parameter that is con-
stant across set sizes (the model described by Bays and Husain,
2008, did not explicitly model sensory noise).

For the non-information-theoretic slots+averaging model, each
slot encodes an item with added Gaussian noise where the noise
variance is constant regardless of the number of slots or items
encoded in memory. If an object is encoded in multiple slots,
memory error is minimized by averaging the stored representation
in each slot. We also included a sensory noise parameter in this
model to maintain consistency with its information-theoretic coun-
terpart. For both non-information-theoretic models, there is no
predicted performance difference between the low- and high-
variance conditions when tested on items that were encoded in
memory. The non-information-theoretic slots+averaging model
does allow for a performance difference between the low- and
high-variance condition due to the predicted poorer performance
when tested on nonencoded items.

Summary of Models

For all models, we also included a lapse component and overall
bias term. On some percentage of trials, given by the lapse parameter,
the response is modeled as being generated randomly regardless of
whether it was encoded in memory. This percentage was included to
allow for the possibility that subjects occasionally press the unin-
tended response key or exhibit lapses in attention or motivation.
Failing to account for the possibility of such lapses can lead to large
biases in the parameters estimated from a model, especially on trials
with small set size or large perturbations (for a more extensive
discussion of this issue, see Morey, 2011; Rouder et al., 2008). The
bias term is included to allow the possibility that subjects incorrectly
estimate the mean of the distribution over feature values in the
experiments or exhibit an overall bias toward reporting positive or
negative perturbations. In evaluating several of the models, we found
that the model fit was slightly improved by allowing the lapse rate to
differ across variance conditions of the experiment. We consequently
report results for all models, allowing separate lapse rates in the low-
and high-variance conditions.

To summarize, we have proposed six different models of the
allocation of capacity when multiple items must be stored in visual
working memory. Four of the models (continuous resource,
slots+averaging, binomial encoding, and flexible encoding) re-
flect a range of possible memory systems, but all share the under-
lying information-theoretic framework that relates capacity, de-
fined in bits, to the precision of memory representations. The latter
two models, the binomial encoding and flexible encoding models,
are two possible instantiations of the idea that accounting for
encoding variability is a critical factor in explaining VWM per-
formance. We also evaluated two standard (non-information-
theoretic) models as a further test of the contribution of the ideal
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observer analysis. In this section, the goal is to evaluate each
model in terms of its ability to account for the observed human
performance.

We estimated the parameters for each model using Bayesian
inference (see Kruschke, 2011, for an introduction to Bayesian
data analysis techniques). Complete details regarding the imple-
mentation of the models and parameter estimation procedure are
provided in the supplemental materials.

Model Results

To determine which model was best able to account for the em-
pirical data, we evaluated each model with the deviance information
criterion (DIC) score (Gilks, Richardson, & Spiegelhalter, 1996). DIC
is a technique for selecting between models that balances goodness of
fit (the mean log-likelihood score for the model) with a penalty term
related to the model’s complexity. This penalty term prevents the
selection of models with many degrees of freedom that overfit the
available data. Figure 9 shows the calculated DIC score, relative to
the best fitting model in each experiment. Smaller DIC scores indicate
models that are better able to fit the data after adjusting for model
complexity. In both experiments, the best fitting model is the flexible
encoding model, though the binomial encoding model performs
nearly as well in comparison to the remaining models.® It is notable
that the two best fitting models both assume that subjects sometimes
encode more items with lower precision and sometimes encode fewer
items with greater precision. By contrast, both the item-limit and
continuous resource models assume that a constant number of items
will be encoded in VWM on each trial (either the entire array, in the
continuous resource model, or up to the slot limit in item-limit
models).

The worst fitting model in both experiments is the non-
information-theoretic continuous resource model. This model fits
the data poorly because, unlike all the other models, it predicts no
difference in performance between the high- and low-variance
conditions. The non-information-theoretic slots+averaging model
is able to predict lower performance in the high-variance condition
but only on trials where the probe item was not encoded in
memory. Therefore, it cannot account for the empirically observed
performance decrement at low set sizes (see Table 1) unless it is
assumed that the slot capacity is limited to a single item. Further,
in both experiments, the information-theoretic models substan-
tially outperform their non-information-theoretic counterparts, de-
spite having the same number or fewer parameters.

Figure 6 shows the resulting fit of the flexible encoding model
to the empirical data. The model fits were obtained by averaging
over the model predictions for each individual subject. As can be
seen by inspection of the figure, the empirical and model data are
in close quantitative agreement (in nearly all cases, the model
predictions fall within the confidence intervals for the observed
human data). As a more rigorous test of the flexible encoding
model’s ability to account for the human data, we also generated
simulated data sets for both experiments using the model. These
data sets were obtained by running the model through the exact
sequence of trials and stimuli given to the human subjects. Simu-
lated responses were obtained using the mean parameter estimates
for each of our subjects. To reduce the variability in the model’s
predictions, 10 repetitions were generated for each trial completed
by a human subject. As shown in Figure 8, the flexible encoding

model is able to account for the observed biases in memory. We
then analyzed the model-generated data using the same psycho-
metric function analysis that was applied to the empirical data.
Figure 7 compares the estimated parameters of the psychometric
functions for the human data and model-generated data. The mod-
els are able to qualitatively capture both the psychometric slope
and the lapse rate of human performance.

In both experiments, the flexible encoding model was able to fit the
data better than the binomial encoding model when evaluated accord-
ing to DIC score. We therefore examined the extent to which the
predicted encoding distribution differed between the two models.
Recall that the binomial encoding model assumes a particular para-
metric form for the encoding distribution and thus has just one
parameter (the encoding probability per item) to be estimated for each
condition. Figure 10 plots the estimated probability of encoding each
stimulus item according to the binomial encoding model. Under the
assumption that memory encoding follows a binomial distribution
with encoding probability p and set size of n possible items, the
trial-to-trial variance in the number of items encoded is given by n p
(1 — p). For both experiments, the encoding probability is a decreas-
ing function of the set size, but there is little or no difference in the
encoding behavior in the two variance conditions.

Compared to the binomial encoding model, the flexible encod-
ing model is completely unconstrained in terms of its allocation,
such that the probabilities of encoding 0 . . . n items in each
condition are treated as free parameters. Because of this lack of
constraint, the flexible encoding model could reproduce the
encoding behavior predicted by the slots+averaging model, the
continuous resource model, or any possible distribution over items
encoded. To compare the behavior of the binomial and flexible
encoding models, we computed the (binomial) encoding distribu-
tions predicted by the binomial encoding model and compared
these to the encoding distributions estimated according to the
flexible encoding model. The distributions are overlaid in Figure
11. As can be seen by inspection of the figure, the two models
predict a highly similar pattern of behavior, although the flexible
encoding model introduces numerous additional free parameters.
Further, the inferred encoding distributions from both models are
qualitatively different than would be predicted by existing item
limit theories. This is not due to any constraints or assumptions of
the models, as the flexible encoding model would be capable of
reproducing the appearance of an item limit, if in fact the data were
generated by such a process. In summary, although the flexible
encoding model is favored over the binomial encoding model
according to a Bayesian model comparison, a binomial encoding
model where the encoding probability represents a decreasing
function of set size appears to offer a concise account of the
encoding process in visual working memory. However, we believe
the more important result is that both models offer a significant
improvement in the ability to account for human performance over
existing models of visual working memory. Both models allow for
substantial encoding variability but also assume that memory
precision is directly tied in trial-by-trial fashion to the number of
stored representations.

¢ As an approximate reference, differences in DIC score greater than 10
are considered strong evidence in favor of the model with a lower DIC
score (Spiegelhalter, Best, Carlin, & Van Der Linde, 2002).
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Figure 9. Comparison of alternative memory encoding mechanisms, evaluated according to deviance infor-
mation criterion (DIC) score. The left figure shows the results for the orientation experiment. The right figure
shows the line length experiment. Lower DIC scores indicate models that better fit the data. The numbers above
each bar indicate the DIC score relative to the best fitting model in each experiment.

For the information-theoretic slots+averaging model, we deter-
mined the slot limit that had the highest probability for each
subject. The most common estimated item limit in both experi-
ments was found to be 3 items. The posterior mean item limit (a
measure that takes into account the uncertainty in each subject’s
estimate) yields a similar result: an average of 3.87 items for the
orientation experiment and 4.22 items for the line length experi-
ment. These results closely correspond to previous estimates of
3—4 items (D. E. Anderson et al., 2011; Cowan, 2001; Cowan &
Rouder, 2009; Zhang & Luck, 2008). Although the estimated item
limits for the present experiments are close to previous estimates,
it remains the case that a discrete item-limit model offers a rela-
tively poor account of the data compared to two alternative models
that do not assume the existence of an item limit in VWM.

The Appendix lists the posterior mean parameter estimates and
95% credible intervals for all parameters that are common across
the information-theoretic models. Within each experiment, the
parameter estimates are similar for each of the models considered,
suggesting that the estimates are fairly robust to potential mis-

specification of the encoding mechanism in VWM. Capacity is
reported as total capacity measured in bits, computed for item-limit
models as (Capacity per Slot X Number of Slots).

The probability matching exponent (defined in Equation 9) is
credibly different than zero in both experiments, indicating that on
trials where a probed item was not encoded in memory, subjects
were able to guess the correct response at above-chance levels.
This result is not surprising, given that it has previously been
demonstrated in a similar paradigm (Thiele et al., 2011). In the line
length experiment, subject performance rather closely approxi-
mated probability matching, and in the orientation experiment
performance was slightly better (¢ = 3.3 for the best fitting
model). This suggests that in the orientation experiment, subjects
were able to make better use of knowledge of the distribution over
features. Given that the mean orientation of arrows had a natural
reference point (the mean orientation was vertical) but the mean
line length was more arbitrary, it is perhaps not surprising that we
find this difference between the two experiments. Future experi-
ments might explore this result further by employing a less intu-

(a) Orientation experiment (b) Line length experiment
o o
4 Low variance
> ® © High variance ©
= o 7 o 7
Qo
@
e
e © | © |
S o o
j=2}
c
.-g < <
g o7 °
)
£
9 [SY] [SY]
= g 4 P
=] =]
IS} T T T T IS} T T T T
1 2 4 8 1 2 4 8
Set size Set size

Figure 10. Probability of encoding each stimulus item, according to the binomial encoding model. (a)
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confidence intervals.



824

(@)

Low variance

SIMS, JACOBS, AND KNILL

Orientation experiment

High variance

o =
= Set size
e 1

@ @ 2

o 7 o 4
> A8
£ g | —— Flexible enc.
2 ----Binomial enc.
S =
g ©

N

o

o .

o T T T T T T T I

1.0

00 02 04 06 08

Number encoded

(b)

Low variance

Number encoded

Line length experiment

High variance

1.0

=1 Set size

e 1

o 2

© 4

A8
—— Flexible enc.
- ---Binomial enc.

Probability
00 02 04 06 08

1.0

00 02 04 06 08

T
2 3 4 5 6 7 8
Number encoded

Figure 11.

T T
2 3 4 5 6 7 8
Number encoded

Estimated distribution over the number of items encoded on each trial, according to the binomial

(dashed lines) and flexible (solid lines) encoding (enc.) models. (a) Data from orientation experiment. (b) Data
from line length experiment. Error bars indicate 95% confidence intervals.

itive distribution over orientations (e.g., having a mean orientation
that is randomly generated for each subject) and examining the
effect on the estimated probability matching exponent.

For the best fitting model (the flexible encoding model), we also
examined whether the total capacity remains constant across set
sizes and variance conditions. Recall that the ideal observer anal-
ysis predicts that total memory capacity should remain constant
across the two variance conditions of each experiment, even
though performance significantly dropped in the high-variance
conditions. Further, if the visual memory system shares a single
pool of resources among encoded items, the total allocated capac-
ity should remain constant across set sizes, regardless of how many
items are encoded. If, on the other hand, visual working memory
does not optimally divide a central capacity among encoded items,
we might expect to find deviations in the estimated capacity in
different set size or variance conditions. To examine this possibil-
ity, we modified the flexible encoding model to allow potentially
different information capacities for each variance and set size
condition. Because of the additional degrees of freedom introduced
by allowing multiple capacity parameters, it was necessary to
include hierarchical priors over the mean capacity in each exper-
imental condition. In other words, the hierarchical model assumed
that the capacity estimate for each subject in each condition was
drawn from a probability distribution with a condition-specific
mean, and these condition-specific mean capacities were distrib-

uted according to an overarching distribution over capacity. This
was necessary because the limited data available in each condition
did not sufficiently constrain the posterior distributions over ca-
pacity when parameters were estimated independently for each
subject and condition. In particular, for set sizes of 1 or 2 items,
performance may be dominated by sensory noise rather than
capacity limitations, making it difficult to unambiguously estimate
capacity in the absence of a hierarchical prior.

Figure 12 shows the posterior mean estimated capacity in each
condition of each experiment for the extended model. Comparison
of the mean capacity between conditions revealed that there were
no credible differences across any of the conditions (in all cases
the 95% credible interval for the difference in means included
zero). Although the models allowed the capacity to differ between
conditions, based on the empirical data there is no evidence to
suggest that total allocated memory capacity did in fact vary.

Finally, although we evaluated four different information-
theoretic models in terms of their ability to account for the empir-
ical data, an additional question is which mechanism defines
optimal performance for the particular experiments reported here.
This analysis could potentially be informative, because if subjects
were observed to behave in a manner that is substantially subop-
timal for the particular task environment (e.g., if encoding a
limited subset of items would dramatically impair performance),
this would suggest limits to the adaptability of encoding behavior
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Figure 12. Posterior mean estimates of memory capacity in different conditions of the experiments. Left:
Estimated capacity in each condition of the orientation experiment. Right: Estimated capacity in the line length
experiment. Error bars correspond to 95% credible intervals around the mean capacity for each condition.

across differing task environments. To answer this question, we
used the mean parameter estimates from the flexible encoding
model (reported in the Appendix) and generated 100,000 simulated
trials in each condition from each of the models using a common
set of parameter values. This allowed us to evaluate the perfor-
mance level that would be achieved by each model, assuming a
common sensory noise and total capacity, so that the only differ-
ence between models was in terms of the encoding mechanism.

Surprisingly, the expected performance of the allocation mecha-
nisms were extremely similar. In the orientation experiment, the
slots+averaging model (with a capacity of 4 slots) would be expected
to perform the worst for a given total capacity (80.6% correct), and the
continuous resource model would be expected to perform the best
(81.1% correct). Performance differences, although small, were stable
across repeated simulations. The binomial and flexible encoding mod-
els were able to match the performance of the continuous resource
model by encoding the entire stimulus array on each trial (mimicking
the continuous resource model). Thus, for these particular experi-
ments, encoding the entire stimulus array on each trial would be
expected to achieve the highest level of performance, though only
marginally outperforming other encoding strategies. A consistent
ranking of models was found for the line length experiment. This does
not imply that the same encoding strategy would be optimal for other
tasks; the details of what defines an optimal allocation strategy are
highly task dependent, though, as we have shown, the drop in per-
formance for suboptimal encoding strategies may be surprisingly
small.

Summary of Model Results

The model analyses reported in this section provide additional
support for the ideal observer framework as a productive tool for
studying and modeling limits in visual working memory. Although
performance was significantly worse in the high signal variance
and the larger set size conditions, these results are naturally and
concisely predicted by a model of VWM that assumes a constant
overall memory capacity. In comparing different mechanisms for
the allocation of this capacity, we demonstrated that the best model
for the empirical data is one that assumes that there is a single
memory capacity that is divided among encoded items but allows
the number of items encoded to vary from trial to trial and across

different conditions of the experiment. The model comparison
results rule out basic item-limit models that assume a fixed number
of encoded items but also exclude the continuous resource model
that assumes all stimulus items are encoded in memory. Instead,
the results indicate a VWM system that exhibits substantial vari-
ability in terms of its behavior: Subjects may sometimes encode
many items with low precision and on other trials encode a few
items precisely. Further, the empirical results provide no strong
evidence for a strict or universal upper limit on the number of
items that may be encoded, suggesting that if there is such a limit,
it may not be that powerful as an explanatory mechanism in
accounting for human performance on any given trial.

Summary and Conclusions

This paper has developed an ideal observer analysis (Geisler,
2003, 2011) of human visual working memory (VWM). Although
it is clear from decades of research that there are strong limits on
the performance of human VWM (Brady et al., 2011; Luck, 2008),
the precise nature of these limits is rather poorly understood.
Existing theories have posited memory encoding mechanisms in-
tended to account for observed phenomena, but the present paper
applies the ideal observer framework to uncover the expected
behavior of an optimally performing but finite capacity memory
system. Importantly, the nature of the capacity limit was not
chosen to fit the empirical data but rather was derived a priori on
the basis of results from a branch of information theory known as
rate—distortion theory (Berger, 1971). Rate—distortion theory pro-
vides the theoretical bounds on performance for any capacity-
limited communication channel—be it human memory or a tele-
graph wire—where capacity is formally defined in terms of bits.

An important contribution of the ideal observer analysis is that
because capacity is defined in a task-independent manner (namely,
bits), the results obtained in one experiment may be used to generate
quantitative predictions for other experiments in a straightforward
manner. Additionally, by starting from an optimal model of VWM,
the estimated capacity represents a theoretical lower bound on human
memory capacity. In practice, the estimation of memory capacity
from behavior is complicated by the need to simultaneously account
for sensory noise, lapses in attention, and the mechanism by which
capacity is distributed across multiple items. Even in this case, if an
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optimal model of performance can be defined for a given task, it
remains possible to estimate a valid lower bound on capacity. That is
to say, subjects may have a higher memory capacity but are limited by
other factors, such as sensory noise, or they may use their capacity in
suboptimal fashion (e.g., applying a suboptimal decoder to imperfect
memory representations). In this case, the ideal observer model fit to
empirical data leads to a measure of the effective capacity of VWM,
rather than its theoretical maximum capacity.

The ideal observer analysis does not yield a specific single
model of visual working memory. Instead, it defines a theoretical
framework for testing alternative models of visual memory. The
central component of this framework is the realization that quan-
titative limits on human memory performance can be directly
predicted from a known memory capacity, and, conversely, a
minimum memory capacity can be directly inferred from observed
human performance. By applying this framework to empirical data
collected across two experiments, we could evaluate several alter-
nate theories of the memory encoding process, including two
existing models that have made competing claims regarding the
mechanisms of visual working memory.

Information-theoretic analysis of perceptual systems is not a new
approach (Attneave, 1954; Miller, 1956). One closely related area of
investigation is absolute identification (Garner, 1953; Luce, Green, &
Weber, 1976), where subjects are presented with a unidimensional
stimulus drawn from a discrete set and must respond by identifying
which item out of the set was presented. By varying the set size, it is
possible to manipulate the informational demand of the task, and by
measuring identification errors, one can estimate the channel capacity
of the subject. Whereas absolute identification tasks examine the
ability to unambiguously assign stimuli to discrete categories, rate—
distortion theory as applied to visual memory instead focuses on the
ability to minimize the introduction of error in storing and retrieving
continuous feature values.

The present work is the first to apply rate—distortion theory as
the optimal solution to the problem of encoding and retrieving
visual information in a capacity-limited memory system. Perhaps
surprisingly, a model with only weak constraints on performance
(assuming only the existence of sensory noise and a finite limit on
memory capacity) was able to offer a parsimonious and quantita-
tive account of empirical results obtained in two experiments,
including the empirical validation of the predicted effects of ma-
nipulating the variance of features in the task.

On the basis of the results obtained in two experiments and sub-
sequent model comparisons, we conclude that when encoding multi-
ple items in memory, people rely on a single, fixed memory capacity
that is distributed among encoded items. The empirical results and
model comparisons also suggest deficiencies of two previous but
competing models of VWM. The continuous resource model (Bays &
Husain, 2008) predicts that there is no upper limit on the number of
items encoded in VWM, and in its existing instantiations, it has
assumed that people encode all stimulus items in a scene. By contrast,
the slots+averaging model (D. E. Anderson et al., 2011; Cowan &
Rouder, 2009) predicts that there is a fixed upper limit on the number
of items that can be encoded. In the majority of instantiations of this
model, the hypothesized mean capacity limit is 4 items (Cowan,
2001), although evidence suggests there may be significant variation
among individuals (Rouder et al., 2008; Todd & Marois, 2005; Vogel
& Machizawa, 2004). Discussions of this model have raised the
possibility of trial-to-trial variability in the number of stored repre-

sentations (Luck, 2008; Vogel et al., 2001), but to date, the magnitude
of encoding variability has not been directly estimated in fitting
item-limit models to human performance.

Based on the combined data from the two experiments, there is no
strong evidence to support a universal item limit in VWM: The
empirical results were better explained by a model that allowed for
encoding variability but assumed the absence of an item limit. At the
same time, it was not found to be the case that subjects universally
encode all stimulus items in a display, as predicted by existing
versions of the continuous resource model. Instead, it appears that
humans may exhibit substantial variability in how they allocate their
memory capacity, sometimes remembering many items with low
precision and sometimes remembering a few items precisely.

Recently, a closely related model has been proposed (Van den Berg
et al., 2012) in which trial-to-trial variability in encoding precision,
rather than variability in the number of encoded items, was argued to
be the critical factor in accounting for human memory performance.
According to this variable precision model, all stimulus items are
encoded, but each receives an amount of resource (equivalent in their
model to precision) randomly drawn from a probability distribution,
such that some stimulus items may be encoded with low precision.
The variable precision model was shown to outperform traditional
item-limit theories in two different experimental tasks (delayed esti-
mation and change localization) and two different visual features
(orientation and color). Like the best fitting model for our data, the
variable precision model assumes that variability in VWM, rather than
the existence of a discrete item limit, accounts for the empirical facts
of human performance. Thus, the two models are closely related and
gain mutual support from their success in different experimental
paradigms. Further, the models are functionally similar in treating
memory representations as noise-corrupted versions of physical fea-
tures. The variable precision model (Van den Berg et al., 2012) treats
the magnitude of encoding noise in memory as a free parameter
estimated separately for each condition, and the information-theoretic
framework offers a rational basis for predicting how memory preci-
sion should vary with experimental parameters (including set size and
the prior distribution of features in the environment).

Relation to Other Empirical Results

How do the present conclusions differ from those of other recent
studies of visual working memory capacity? Previous attempts at
demonstrating the existence of item limits in visual working memory
have focused on properties of simple psychometric functions fit to
empirical data. One such property is whether the estimated slope of
the psychometric function reaches a plateau with increasing set size.
Item-limit models predict the existence of such a plateau, as increas-
ing the set size beyond the item limit should have no effect on the
precision of memory representations. By contrast, the continuous
resource model predicts that memory precision should monotonically
decrease with increasing set size. In the empirical data reported here,
there was limited evidence regarding the existence of a plateau in the
slope of the psychometric function. The collective results from other
recent studies also paint a mixed picture, with some studies showing
no evidence for a plateau (Bays & Husain, 2008, supplemental ma-
terial) and others showing its existence (D. E. Anderson et al., 2011;
Zhang & Luck, 2008).

Several factors may limit the usefulness of this type of analysis.
First, finding a plateau in group-averaged data does not imply the
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existence of any such effect at the level of individual subjects
(Rouder et al., 2008). Second, Bays and colleagues (Bays et al.,
2009, 2011) have argued that a plateau in memory precision may
be accounted for by subjects misreporting the features for the
wrong stimulus item, although this possibility has been challenged
(D. E. Anderson et al., 2011). Third, and more important, it has
previously been assumed that finding this effect constitutes defin-
itive evidence for an upper limit on the number of items that may
be stored in visual working memory. The present results have
proved this assumption to be unfounded, as the best fitting models
were able to reproduce the main features of human psychometric
performance without assuming the existence of an item limit (see
also Van den Berg et al., 2012).

In comparing these empirical results to other studies, it is also
important to account for the possibility that methodological differ-
ences may play a significant role. In the present experiments, subjects
were given a forced choice on each trial, whereas other experiments
have used a “cued recall” paradigm, in which subjects choose from a
continuum to indicate their response. The testing procedure used to
assess visual memory has previously been shown to influence the
measured sensitivity of memory (Makovski, Watson, Koutstaal, &
Jiang, 2010). Other methodological differences may be important as
well: In the present experiments, stimuli were presented at fixed
retinal eccentricities and at predictable locations, and eye tracking was
used to ensure that subjects did not make eye movements during trials.
These factors may have increased the probability of encoding more
items in visual working memory.

The ideal observer analysis also generated a novel prediction
that was subsequently verified in two experiments. In particular,
information theory predicts that the precision with which informa-
tion can be stored in memory will vary as a function of the
distribution of the information source in the external environment.
In particular, signals with low variance are fundamentally easier to
encode than signals with high variance. In keeping with this
prediction, it was demonstrated that the accuracy of memory
decreased as the variance of the information source increased. A
simple information-theoretic model was able to parsimoniously
account for this finding without any additional assumptions or
mechanisms. To account for these results, non-information-
theoretic models would have to postulate an additional mechanism.

Although the present analysis is the first to quantitatively predict
the effects of feature variance on performance, our empirical
results are not unique. A recent study (Brady, Konkle, & Alvarez,
2009) has demonstrated that people have the ability to “compress”
visual information in memory and, hence, store more information
when redundancies are introduced in the stimuli. Brady and Alva-
rez (2011) have demonstrated that ensemble statistics, such as the
mean size of task-relevant features in a display, influence the
storage of items in visual working memory. Other experiments
have demonstrated that there is a similarity advantage in visual
working memory (Lin & Luck, 2009; Mate & Baqués, 2009;
Sanocki & Sulman, 2011), such that performance and capacity
estimates tend to be higher when stimuli are homogeneous or low
variance. Interestingly, Lin and Luck (2009) found that the advan-
tage for low-variance stimuli held regardless of whether feature
variance remained constant for a block of trials or changed from
trial to trial in unpredictable fashion. This suggests that subjects
may be able to adapt memory representations based on the statis-
tics of features on a single trial.

An interesting result from the experiments was that the estimated
mean capacity was similar for line length and orientation. It is tempt-
ing to speculate that such a result implies that memory storage for
length and that for orientation draw on the same central capacity store.
This would predict that in a task where subjects must encode orien-
tation and length simultaneously, performance should be worse than
in the case of storing a single feature. This hypothesis has been
challenged by several experimental studies that have shown no evi-
dence for degradation in performance when multiple features are
stored (Luck & Vogel, 1997; Vogel et al., 2001; Zhang & Luck,
2008). However, completely independent storage of distinct features
may not be supported when the precision of memory representations
is taken into account (Fougnie, Asplund, & Marois, 2010).

Adaptation and Optimality in Visual Working
Memory

One assumption of the ideal observer analysis is that humans have
access to accurate estimates of the uncertainty of their sensory sys-
tems and the variance of features in the task environment. In applying
the ideal observer models to the human data, we discarded the initial
trials from each experimental session. In theory, subjects may have
observed enough evidence at this point to form relatively accurate
estimates of the mean and variance of visual features. However, the
possibility remains that subjects inaccurately estimated these statis-
tics. In order for VWM to be an optimal system, the coding scheme
used to encode signals must be optimal with respect to the statistics of
the source. This is not a feature unique to our analysis of VWM but
rather a general result from information theory (Shannon & Weaver,
1949): Efficient codes for information are fundamentally dependent
upon the context in which that information occurs. If experimental
subjects adopt inaccurate estimates of the signal variance, the true
capacity of VWM would be higher than the estimates obtained based
on the observed data, with the implication that subjects used this
larger capacity in a suboptimal manner.

In the neuroscience literature, there is significant interest in iden-
tifying the adaptability of neural codes to the statistics of an informa-
tion source (David, Vinje, & Gallant, 2004; Dean, Harper, & McAlp-
ine, 2005; Fairhall, Lewen, Bialek, & de Ruyter van Steveninck,
2001). Dean et al. (2005) examined the case of adaptation of neural
codes in the mammalian auditory system to changes in auditory
stimulus intensity—a particularly interesting case, as perceptible dif-
ferences in sound intensity can vary over 12 orders of magnitude.
They found that individual neurons could adapt their mean firing rate
to improve coding accuracy in response to changes in a variety
stimulus statistics, including changes to the variance of the stimuli.
Such adaptation was observed to occur at the level of individual
neurons extremely rapidly, on the order of seconds. This suggests at
least the possibility that human subjects would be able to optimally
adapt their encoded memory representations to the statistics of the
information source. This possibility is bolstered by recent computa-
tional simulations (Geisler, Najemnik, & Ing, 2009) that have char-
acterized the optimal neural encoding scheme for natural visual fea-
tures. The optimal stimulus encoders derived using this approach was
found to be similar, at first approximation, to receptive fields found in
primary visual cortex. Investigating whether optimal neural encoding
extends to visual working memory represents an important topic for
future research.
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In tasks that place a minimum-precision requirement on memory,
an endogenously controlled limit on the number of encoded items
may reflect an optimal strategy for completing the task. The ideal
observer framework does not preclude the possibility that the alloca-
tion of capacity among items is adaptive, for example, by adjusting
the encoding process to optimize performance in each individual task.
Zhang and Luck (2011) have recently tested this possibility in several
experiments that manipulated the precision demands on visual work-
ing memory. They found that, regardless of task demands, there was
no empirical evidence for shifts in the number or precision of encoded
memory representations. In contrast, subjects did exhibit shifting
performance with different task demands when evaluated on iconic
memory (a more immediate form of visual memory) as opposed to
visual working memory performance. Based on these results, in
conjunction with our own, it appears that though memory represen-
tations may be sensitive to the statistical regularities of an environ-
ment, the encoding process itself (the selection of items to be stored)
may not be under complete endogenous control or may possess only
limited adaptability to changing task demands.

Potential Applications of the Framework

Although we have explored several different models of how mem-
ory capacity is divided among multiple items in a scene, there remain
numerous other possibilities that warrant further investigation. One
assumption common among the best fitting models is that capacity is
evenly divided between encoded items. Alternatively, there may be
variance not just in the number of encoded items but also in terms of
how that capacity is divided, such that some items receive a greater
share than others (Van den Berg et al., 2012). One possibility is that
when different objects in a scene have different complexities, that
more complex objects will receive a greater proportion of the avail-
able capacity. In at least one experimental test of this hypothesis
(Barton, Ester, & Awh, 2009), it was found that the precision of
memory representations appears to be independent of the complexity
of other objects in a scene, suggesting that capacity may be allocated
evenly among items, regardless of their complexity. We do not claim
that the best fitting models reported here capture all details of visual
working memory in complete fidelity. Rather, the ideal observer
approach has allowed the specification of models that improve over
existing accounts, while rendering salient the relationships among
existing models and allowing for their principled evaluation. It is our
hope that the theoretical approach developed in this paper will also be
useful in guiding the development of new experimental paradigms
and tests of models that are better suited for discriminating among
competing explanations.

Finally, another important aspect of human visual memory that
was not addressed is the role of time (or more directly, forgetting)
in governing performance. The present experiments used a fixed
retention interval and therefore cannot address the issue of decay
or interference in visual working memory. Other experiments have
more directly examined the role of time in visual memory. Eng,
Chen, and Jiang (2005) found significant decrements in perfor-
mance with retention intervals lasting 2 s. Zhang and Luck (2009)
examined not only the effect of retention intervals lasting up to 10
s but also how performance degraded over time. Using a cued-
recall paradigm, they argued that memory representations do not
gradually decay but rather are terminated abruptly. Such an abrupt
offset could be incorporated in the present modeling framework by

assuming that encoded representations are disrupted at a rate given
by a specified hazard function. An interesting question that may
potentially be addressed using the ideal observer framework is
whether the memory representations for stimulus items of different
complexity may be disrupted at different rates or to greater extents.

In summary, the combined empirical and modeling results pre-
sented here suggest that the most productive approach to understand-
ing the nature of capacity limits in visual working memory may lie in
treating memory as a communication channel that has been opti-
mized, through evolution and development, toward the efficient cod-
ing and storage of visual information. This approach of treating
behavior as rationally or optimally adapted to a task environment has
been widely influential in investigating other aspects of vision (Gei-
sler, 2011; Knill & Richards, 1996) and higher level cognition (J. R.
Anderson, 1990). The results obtained in the present experiments are
largely consistent with such an optimal memory system. Future re-
search may uncover properties of visual working memory that fail to
conform to the basic predictions of the ideal observer framework.
However, by starting with an ideal model of performance as a basic
assumption, this paper provides an important reference to which
future experimental results and models can be compared.
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Appendix

Posterior Mean Estimates of Parameters Common Across Information-Theoretic Models

Model

Experiment and param-
eter Slots+averaging

Continuous resource

Binomial allocation Flexible allocation

Orientation experiment

Lapse (low variance)

Lapse (high
variance)

Bias

Sensory noise

Total capacity (bits)

Probability matching
exponent

Item limit

Line length experiment

Lapse (low variance)

Lapse (high
variance)

Bias

Sensory noise

Total capacity (bits)

Probability matching
exponent

Item limit

0.04 [0.033, 0.046]
0.074 [0.063, 0.084]

—0.59 [—0.81, —0.36]
4.62[4.3,4.93]
4.16 [3.63,4.91]
2.0 [1.44,2.83]

3.87[3.57,4.21]

0.10[0.87, 0.11]
0.13[0.11, 0.14]

0.03310.03, 0.37]
0.088 [0.083, 0.093]
4.94 [3.81, 6.29]
1.20 [0.66, 1.93]

4.22[3.78, 4.64]

0.054 [0.047, 0.061]
0.11[0.10, 0.12]

—0.59 [—-0.79, —0.38]
4.90 [4.57,5.22]
3.91[3.75, 4.08]

0.11[0.096, 0.12]
0.18 [0.16, 0.19]

0.027 [0.025, 0.03]
0.094 [0.089, 0.99]
4.06 [3.66, 4.52]

0.03 [0.024, 0.034]
0.06 [0.047, 0.071]

—0.72 [-0.95, —0.49]
4.3[3.94, 4.63]
4.62 [4.05, 5.39]
3.31[2.8,3.86]

0.065 [0.052, 0.078]
0.111[0.098, 0.13]

0.034 [0.003, 0.038]

0.074 [0.068, 0.081]
4.21[3.43,5.23]
0.9310.78, 1.1]

0.035[0.028, 0.041]
0.071 [0.059, 0.084]

—0.71 [—0.94, —0.48]
4.46 [4.11, 4.80]
4.471[3.97,5.10]
3.60 [2.94, 4.36]

0.075[0.061, 0.089]
0.120.11, 0.14]

0.045 [0.041, 0.049]

0.080 [0.074, 0.086]
4.57[3.60, 5.71]
1.03[0.84, 1.25]

Note. 95% highest density credible intervals for the sample mean are given in brackets following each parameter.
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