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Because of uncertainty and noise, the brain should use accurate
internal models of the statistics of objects in scenes to interpret
sensory signals. Moreover, the brain should adapt its internal
models to the statistics within local stimulus contexts. Consider
the problem of hitting a baseball. The impoverished nature of the
visual information available makes it imperative that batters use
knowledge of the temporal statistics and history of previous pitches
to accurately estimate pitch speed. Using a laboratory analog of
hitting a baseball, we tested the hypothesis that the brain uses
adaptive internal models of the statistics of object speeds to plan
hand movements to intercept moving objects. We fit Bayesian
observer models to subjects’ performance to estimate the statistical
environments in which subjects’ performance would be ideal and
compared theseQ:9 with the true statistics of stimuli in an experiment.
A first experiment showed that subjects accurately estimated and
used the variance of object speeds in a stimulus set to time hitting
behavior but also showed serial biases that are suboptimal for stim-
uli that were uncorrelated over time. A second experiment showed
that the strength of the serial biases depended on the temporal
correlations within a stimulus set, even when the biases were esti-
mated from uncorrelated stimulus pairs subsampled from the larger
set. Taken together, the results show that subjects adapted their
internal models of the variance and covariance of object speeds
within a stimulus set to plan interceptive movements but retained
a bias to positive correlations.

Bayesian inference | motion perception | statistical learningQ:10

ManyQ:14 sensorimotor tasks involve active interactions with mov-
ing objects and therefore, require accurate estimates of object

velocity. Because sensory motion signals are noisy, the visual system
should use knowledge of the statistics of object velocities to in-
tegrate sensory motion information with the velocity predicted by
the history of previously observed stimuli. The fact that stimulus
history biases perceptual judgments is well-known. Broadly speak-
ing, it appears in two ways—biases to (or away from) the mean of
a stimulus distribution (1–9), referred to as central-tendency biases,
and biases to (or away from) recently observed stimuli (10–16),
referred to as n − 1 biases.
It has been proposed that central-tendency biases reflect the

behavior of a perceptual system that optimally integrates noisy
sensory measurements with prior knowledge of the distribution of
stimulus values to make perceptual judgments (2, 4, 7–9). Evi-
dence for this hypothesis comes from studies showing that central-
tendency biases in perceptual judgments increase when the sensory
uncertainty of a stimulus increases (4) or the variance of a stimulus
set decreases (2, 7–9). It also has been suggested that observers
learn the mean and variance of a stimulus distribution in a statis-
tically optimal fashion (8) and continuously update internal esti-
mates of mean and variance (7). However, n − 1 biases in
perceptual judgments, perhaps because they are clearly sub-
optimal when stimulus sequences are independent, have typically
been regarded as a sensory fusion between consecutive stimuli
(16) (for example, as might be caused by short-term adaptation or
primingmechanisms). Like central-tendency biases, however, n− 1
biases may also be a consequence of statistical inference, albeit

using an incorrect assumption that successive stimuli are corre-
lated with one another.
Although one can always retrofit a statistical model to account

for observed perceptual biases (as had been done for speed judg-
ments) (17), the strong prediction of the probabilistic model of
human perceptual inference is that observed biases (both to the
mean and the preceding stimulus) will adapt to changes in the
global statistics within a stimulus set. We tested this prediction for
perceptual estimates of object speed used to plan handmovements
to intercept a moving object (6, 14–16). Most previous studies of
perceptual biases have used some form of perceptual report of the
stimulus dimension of interest. Although simple and direct, this
approach confounds response biases with perceptual biases, and it
is unclear whether the reported biases generalize to the perceptual
computations embedded in behavior. We, therefore, measured
biases in subjects’ estimates of object speed indirectly through their
performance on a sensorimotor task requiring subjects to extrap-
olate the motion of a briefly viewed target object. Subjects viewed
a target object moving at constant speed before it disappeared
behind an occluder. They were asked to hit the target with their
finger when it reached an impact zone located at variable distances
from the edge of the occluder (see Fig. 1). We used the timing of
subjects’ hitting movements to infer the statistical properties of
their speed estimates.
Although it complicates the data analysis and modeling, this

approach has two advantages over previous studies that used direct
perceptual reports of a stimulus parameter. First, it probes the
perceptual computations embedded in a natural sensorimotor
task. Second, it sidesteps the potential confound between per-
ceptual and response bias that is inherent in studies that use direct
perceptual report. In particular, the sensorimotor paradigm allows
us to experimentally disassociate the statistics of the response
variable (time that the object reaches the impact zone) from the
statistics of the signal that we are studying (object speed). By
manipulating the statistics of the distance to the target zone, we
can keep the statistics of time-to-impact zone constant across
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experimental conditions in which we vary the statistics of object
speeds, ensuring that differences in subjects’ behavior across
conditions truly reflect perceptual adaptations to the statistics of
object speed.
In a first experiment, we tested whether subjects adapted their

central-tendency biases to stimulus statistics by testing subjects in
stimulus contexts with different speed variances. In a second ex-
periment, we tested whether n − 1 biases adapted to changes in
the trial-to-trial correlations within a stimulus set. To measure
how well subjects adapted to the statistics of the experimental
stimulus sets, we fit subjects’ data using a Bayesian observer model
that incorporated an internal model of the temporal statistics of
stimulus speeds. The internal model fit to subjects’ data provides
a characterization of the environment in which subjects’ perfor-
mance would be optimal. As such, it provides a quantitative
characterization of the statistical environment to which subjects’
estimations strategies are tuned in any given experimental con-
dition and allows us to measure how well their estimation strat-
egies adapted to the statistics within a stimulus set.

Results
Fig. 1 illustrates subjects’ task. A virtual ball moved along a ta-
bletop before disappearing behind an occluder. Subjects were
told to hit the ball when it passed under an impact zone painted
over the occluder (Fig. 1B). If successful, the ball reappeared and
exploded. If not, it simply reappeared in its position at the time
that the subjects’ fingers made contact with the table (providing
quantitative error feedback). In a first experiment, the speed of
the ball and the position of the impact zone were drawn ran-
domly and independently from fixed probability distributions
across trials. We ran three groups of subjects in conditions with
low, medium, and high variances in target object speeds. The
distribution of distances from the front edge of the occluder to
the center of the impact zone was set to correspondingly high,
medium, and low variances to equate the variance in the time
that it took the ball to reach the center of the impact zone across
the three conditions. To maximize the variance of target speeds
across trials while maintaining reasonable upper and lower bounds

on the speeds, we used uniform distributions in log space for
both velocity and distance (Fig. 1C).
Twenty-four subjects (eight subjects in each variance condi-

tion) ran in one session of six blocks of 100 trials each. Another
set of 24 subjects ran in two sessions on different days to explore
possible long-term learning effects. We first analyzed data from
only the first session for all 48 subjects. We treated the first two
blocks of a session as training trials and discarded those Q:15from the
analysis, in accord with previous results showing that adaptation
to changes in mean occurs very fast, whereas adaptation to
changes in variance takes 100–200 trials (8).
Subjects’ timing performance could have been influenced by

separate biases in estimates of target speed and distance traveled
behind the occluder or simple timing biases. To provide an initial
insight into which of these biases affects subjects’ performance,
Fig. 2A shows subjects’ average timing biases in each of the three
experimental conditions as a function of target speed and dis-
tance to impact zone. The brightness of each pixel represents the
log ratio of subjects’ hitting time and the time-to-impact zone
computed from the stimulus speed and distance. Dark pixels
represent early hits, and light pixels represent late hits. Both axes
and time values are given in log units, because the relationship
between the time-to-impact zone, speed, and distance is linear in
log space (log T ¼ log D− log V ). The raw data show that sub-
jects’ behavior does not reflect a simple timing bias, which would
appear as 45° iso-bias lines in Fig. 2 (because stimuli with equal
times-to-impact zones are given by lines with a slope =1 in
Fig. 2). Rather, the apparent iso-bias lines appear slanted slightly
away from vertical, suggesting that subjects’ timing behavior is
more heavily influenced by speed biases than distance biases.
Moreover, the size of the biases for any particular stimulus speed
depends on the distribution of speed in the stimulus. For in-
stance, the biases are stronger for a log speed of 2.3 in the low-
speed variance condition (gray scales are darker in that column)
than the same speed in the high-speed variance condition.
To quantify the influence of sensory signals on subjects’ hitting

behavior, we regressed subjects’ hitting times against the speed
and distance presented in the current trial and previous trials (in
log space). This Q:16gives the regression equation

Lti ¼

 

wd
0 Ldi þ

XN

j¼1
wd
j Ldi−j

!

−

 

wv
0 Lvi þ

XN

j¼1
wv
j Lvi−j

!

þ k; [1]

where i is the trial number, k is a constant bias, and Lt, Ld, and
Lv are log-hitting time, log distance, and log speed, respectively.
We performed the regression in log space, because the relation-
ship between true time, distance, and speed is linear in log space.
By doing so, we implicitly assumed that perceptual uncertainty in
speed and distance estimation as well as production noise in
motor timing are constant in log space. This is Q:17consistent with
psychophysics showing that variance in these perceptual and mo-
tor quantities at least approximately follows Weber’s law (18–
20). Fig. 2B shows the results of the regression analysis. A
cross-validation test Q:18(SI Text, section 1) showed that including
only the immediately preceding target speed in the regression
and none of the preceding target distances provided the best fit
to subjects’ data. Thus, subjects’ behavior is influenced by the
speed of the target on the previous trial but not the distance to
the impact zone on the previous trial.
What is immediately apparent from Fig. 2B is that the weights

to the speed and distance terms differ markedly from each other;
in particular, speed biases are significantly larger than distance
biases. To visualize the biases more directly, we can reexpress the
regression equation to include an explicit term for subjects’ biases,
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Fig. 1. The schematic illustration of experimental setting (A) and the ar-
rangement of target, occluder, impact zone, and starting cross in the
working space (B). The starting position of the target was chosen so that the
time that it was visible before disappearing behind the occluder was 400–
600 m. A hit was recorded if a subject’s finger touched the red impact zone
at any position touching on the hidden target. (C) Histograms of target
speed, distance to impact zone, and time to impact zone in each of the three
conditions. The variances of time to impact zone were equivalent across
conditions in log space and had exactly equivalent distributions in the low-
and high-speed variance conditions.
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Lti ¼
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wd
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1# wd

μ

"
Ldi
i

#
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wv
μμLv þ wv

1Lvi#1 þ
!
1# wv

μ # wv
1

"
Lvi
i
þ k′; [2]

where μLd and μLv are the standard distances and speeds to
which subjects’ estimates are biased. We have written Eq. 2 to
represent the best-fitting model derived from the cross-validation
analysis, which has no n − 1term for distance and contains no
speed terms for trials preceding the n-first trial. One cannot
estimate the values of μLd and μLv from timing data alone, but
inspection of Eqs. 1 and 2 shows that we can calculate the values
of the bias weights, wd

μ and wv
μ, from the weights in the original

regression as wd
μ ¼ 1−wd

0 and wv
μ ¼ 1−wv

0 −wv
1. Fig. 2C replots the

regression weights in this form, where the weights can now be
interpreted as subjects’ biases to an internalized standard and the
previous stimulus.
Both the biases to a standard speed and the speed of the

previous target were significantly greater than zero [t(47) =
10.06, P < 0.001; t(47) = 7.31, P < 0.001], and both differed
significantly across speed variance conditions [F(2,45) = 17.04,
P < 0.001; F(2,45) = 7.78, P = 0.001]. The results of the

regression analysis bear out the qualitative prediction of the
hypothesis that subjects use a statistical strategy to combine
sensory information with prior knowledge of speed statistics—
that biases to an internalized estimate of the mean should de-
crease with increasing speed variance. The bias to the speed of
the previous stimulus, however, is clearly suboptimal, because
target speeds were uncorrelated from trial to trial.
The distance bias term from the regression, wd

μ, although sig-
nificantly greater than zero [t(47) = 2.90, P= 0.006], did not differ
significantly across variance conditions [F(2,45)= 2.79, P=0.072],
which would be expected from a strategy that computes time using
a statistically biased estimate of distance. When we include n − 1
distance term in the regression, subjects’ hitting times were
not significantly biased by the distance in the previous stimulus
[t(47) = 1.00, P = 0.32], a result supported further by the cross-
validation analysis. Both the central-tendency and n− 1 bias terms
for distance were significantly different from the same bias terms
for speed [central tendency: t(47) = 6.97, P < 0.001; n − 1: t(47) =
3.94, P < 0.001]. This Q:19conclusively shows that subjects’ biases did
not result from biases in hitting time, because Q:20that would predict
equal bias terms for speed and distance (because Lt = Ld − Lv).
Moreover, the pattern of distance biases across variance con-
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Fig. 2. Results of experiment 1. (A) Subjects’ timing biases as a function of stimulus velocity and distance in log space (aggregated over all subjects). The
brightness of each pixel represents the log ratio of subjects’ average hitting time to the hitting time predicted by the true stimulus speed and distance. Dark
bins represent early hits, and light bins represent late hits. (B) Weights derived from the regression averaged across 16 subjects in each of the three variance
conditions. (C) The weights for speed derived from the rearranged regression (Eq. 2), including the weight to an internalized standard speed and the weight
to the speed of the previous stimulus. Blue curves show the regression results derived by simulating the best-fitting Bayesian observer models for each subject
in the exact experimental and stimulus conditions used in the experiment.
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ditions is inconsistent with the behavior of a statistically optimal
estimator of distance, because even if we treat the results of the
t test as significant, it decreases with decreasing variance in
stimulus distances. ThisQ:21 suggests that the biases in speed and
distance derive from qualitatively different processes, a point that
we return to in Discussion.
The results provide seemingly mixed evidence for the hypothesis

that subjects’ use an adaptive internal model of stimulus statistics to
estimate target speed in this task.On the plus side, central-tendency
biases decrease as speed variance increases within a stimulus set, as
predicted. On the negative side, the observed n − 1 biases do not
match the statistics of the stimuli in the experiment, which were
uncorrelated from trial to trial.We hypothesized that subjects’ n− 1
biases do, in fact, result from an adaptive statistical estimation
process but one that is biased to a prior belief that stimuli are
correlated from trial to trial. The strong prediction of the adaptive
estimation hypothesis is that, even if their behavior is suboptimal in
an absolute sense, subjects will adapt their n − 1 biases to the cor-
relations within a stimulus set. Experiment 2 tested this prediction.
In experiment 2, one group of subjects was tested using target

speeds with a strong positive trial-to-trial correlation (ρ ¼ 0:6—
positive-correlation condition), and another group was tested
using target speeds with a strong negative trial-to-trial correla-
tion (ρ ¼ 0:6—negative-correlation condition). Target speeds
were generated as samples from a stationary random walk (a
discrete form of Ohrnstein–Uhlenbeck process) given by the
state update equation

Lviþ1 ¼ μLv þ αvðLvi − μLvÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1− α2v

q
ωLv; [3]

where μLv is the mean speed of targets, αv is set equal to the
desired correlation in target speeds from trial to trial, and ωLv is
a white noise process with variance that is equal to the variance
of target speeds. The variance of target speeds was equated
across conditions. Fig. 3A shows example time courses of target
speeds in each of the conditions. In both conditions, the same
process was used to generate occluder distances but with trial-to-
trial correlations set opposite to thoseQ:22 of target speeds. This
guaranteedQ:23 that stimuli contained no trial-to-trial correlations
in the predicted times to impact zone for the targets.
To test whether subjects adapted to the different correlations

in the two conditions, we applied the same regression analysis as
in experiment 1 to the data from experiment 2. Fig. 4 shows the
regression weights for the speed terms. The results for distance
were similar to experiment 1 (little bias to the mean and no bias

to the previous stimulus). To avoid possible sampling artifacts
created by the fact that the difference between successive stim-
ulus speeds was very different in the two conditions, we used
a Monte Carlo subsampling technique (Methods and Fig. 3B) to
select successive pairs of trials for which the joint statistics (both
in speed and distance) were the same in the two correlation
conditions. For the subsampled pairs of trials used in this Q:24analysis,
the mean and variance of trial-to-trial differences in both speed
and distance were the same in both stimulus conditions. Similarly,
the pairs of trials used in the Q:25analysis contained no correlations
between target speeds or distances to the impact zone. ThisQ:26

eliminated 60% of trials from the analysis. As shown in Fig. 4, the
results of the regression analysis did not change when only
the subsampled trial pairs were used. The regression applied to
the subsampled data shows that subjects’ biases to the mean
speed did not change across correlation conditions [F(1,29) =
0.30, P = 0.588], but subjects’ biases to the previous target speed
were significantly lower in the negative-correlation group than
the positive-correlation group [F(1,29) = 5.31, P = 0.029].
Results confirm the prediction of our hypothesis that subjects
adapt their n − 1 biases to the correlations within a stimulus set.

Modeling
To understand the computational basis for subjects’ performance,
we fit an observer–actor model that combined a Bayesian esti-
mator of target speed with a model that mapped the speed esti-
mate and the occluder distance to a hitting time. The Bayesian
estimator model treats subjects as ideal observers for a stimulus
environment with well-specified statistics for trial-to-trial varia-
tions in target speed and the sensory noise on speed estimates. The
parameters of the model fit to each subjects’ data specify the sta-
tistical environment in which each subject’s behavior, at least in
regards to speed estimates, would be optimal. Unlike previous
approaches using Bayesianmodeling, the goal of our analysis is not
to test whether subjects are Bayesian but rather, to assume that
they are (a weak assumption, because Bayesian models are fairly
general) and use modeling analysis to understand what kind of
statistical model that subjects use to estimate speed, test whether
subjects adapt appropriately to the statistics of stimuli, and eluci-
date where their performance is maladaptive.
Although we are most interested in the observer model for

speed estimation, fitting that model to subjects’ data requires the
second component of the full observer–actor model—how speed
estimates and occluder distance map to hitting time. Existing ev-
idence suggests that, when performingmotion prediction tasks like
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the one used here, humans attentively track objects after they dis-
appear behind an occluder (21). ThisQ:27 would account for the ob-
served differences between the speed and distance bias terms
derived from the regression analysis. Unfortunately, fitting a track-
ing model to subjects’ data is computationally intractable. We,
therefore, fit a simplifiedmodel to subjects’ data that is based on the
expected behavior of a suboptimal generalization of a perfect,
noiseless tracking system.
A perfect tracker will hit the impact zone at the time that its

internal estimate of target position reaches the center of the
impact zone. Assuming a noiseless tracker, this is givenQ:28 in log
space by

L̂ti ¼ Ldi −Lv̂i; [4]

where L̂ti is the log-hitting time on trial i, Ldiis the true occluder
log distance on that trial, and Lv̂i is the estimate of log-target
speed derived from sensory speed signals on that trial and pre-
vious trials. Because it is unrealistic to assume that subjects are
perfect trackers, we fit subjects’ data using a generalized linear
model that assumes that the tracking system induces both biases
and noise in the timing of subjects’ hitting movements. The gen-
eralized model is given by

L̂ti ¼ wdLdi þ k−Lv̂i þ ηi; [5]

where wd and k are multiplicative and additive bias terms (in log
space) and ηi is additive white Gaussian noise. Modeling the re-
sponse (timing) noise as additive in log space is done here for
computational convenience; however, in SI Text, section 3, we
show that a linear tracker that integrates a noise-corrupted inter-
nal estimate of target speed over time produces hitting times with
biases and noise characteristics that are well-approximated by
this model.
We model subjects’ estimates of log speed as the outputs of

a Bayesian estimator that computes the mean of a posterior
probability density pðLvijLvsensei ;Lvsensei−1 ; :::Þ computed using a par-
ticular statistical model of target speeds. Themodel operates in log
space and assumes that target speed variations from trial to trial
are generated by the same model used to generate the stimuli in
experiment 2—a discrete form of an Ohrnstein–Uhlenbeck pro-
cess (Eq. 3). Unlike a simple random walk model, the Ohrnstein–
Uhlenbeck process has the desirable property that it is stationary
with finite variance (given by the variance of the noise process

ωLv). Sensory observations are modeled as noisy versions of the
true target speed on each trial

Lvsensei ¼ Lvi þ ηLv; [6]

where ηLv is constant-variance Gaussian white noise. The sensory
noise model, because it is constant variance in log space, displays
Weber law behavior in speed discrimination, which has been
shown experimentally (18).
The optimal estimator for target speed is given by the standard

Kalman filter equations. The posterior mean speed for a given
trial is given by a weighted sum of the mean speed in the stimulus
set, the estimate of speed from the previous trial, and the noisy
sensory speed signal measured on that trial:

Lv̂i ¼ wμμLv þ w1Lv̂i−1 þ
$
1−wμ −w1

%
Lvsensei : [7]

The weights in the update equations are determined by the
variance of sensory noise, the assumed variance in the stimulus
set, and the assumed trial-to-trial correlation between stimulus
speeds (αv). Given the long delays between the beginnings of
each trial (∼5 s), it is likely that the internal estimate of the
previous target speed used to estimate the target speed on any
given trial is corrupted by memory noise. We, therefore, included
in the model a term for internal memory or state noise. The
resulting recursive estimator equations are given by

Lv̂i ¼ wμμLv þ w1Lv̂mem
i− 1 þ

$
1−wμ −w1

%
Lvsensei

Lv̂mem
i ¼ Lv̂i þ ωmem

; [8]

where ωmem is the internal Gaussian memory noise source. The
optimal weights for an estimator with memory noise in the in-
ternal state estimates are given in SI Text, section 2. Eq. 8, com-
bined with Eq. 5, describes the full observer–actor model for
hitting times on each trial.
We used a hierarchical Bayesian model to estimate population

means of the observer–actor model parameters that best charac-
terize each subject’s performance. The model assumes that the
observer–actor parameters characterizing each subject are drawn
from population distributions with unknown parameters (e.g.,
means and SDs).WeusedMarkovChainMonteCarlo technique to
compute the posterior probability density functions on the ob-
server–actor model parameters that characterize individual sub-
jects’ performance (Methods). Themeans of these posteriors can be
thought of as the best-fitting observer–actor model parameters to
each subject’s data. We also used the results of Markov Chain
Monte Carlo sampling to compute posterior probability density
functions for the population means of observer–actor parameters.
The means of these posteriors serve as best estimates of the pop-
ulation means of observer–actor parameters characterizing all po-
tential subjects’ performance in the task, whereas the ranges of
values that contain 95% of the posterior density around the mean
provide uncertainty bounds on these estimates, referred to in
Bayesian data analysis as credible intervals. Like confidence inter-
vals in classical statistics, credible intervals form the basis for testing
for differences between populations in Bayesian data analysis.
We simulated the performance of observer–actor models fit to

each subject’s data in experiment 1 (using the actual sequence of
stimulus values presented to each subject) and performed the same
regression analysis on the model observers’ timing behavior in the
task. Fig. 2C plots the model observers’ weights for comparison
with subjects’ weights. As can be seen in Fig. 2C, the model
observers’ regression weights fit subjects quite well. Themodel also
captured the variability in subjects’ performance. Fig. 5A shows
scatter plots of the hitting time on each trial as a function of the
stimulus-specified time to impact zone for both model and human
observers. Fig. 5B plots the SD of the residual errors for the model
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Fig. 4. Results of experiment 2. (A) Subjects’ biases to the mean speed
(derived by fitting Eq. 2 to subjects’ data). The black line shows the re-
gression results using all trials, the red line shows the regression results using
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trial (same color coding).
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observers against the SD of the residual errors for the matched
human subjects.
The best-fitting sensory noise SD was 0.14 in log units (95%

credible interval = 0.12, 0.17), equivalent to the same Weber
fraction. ThisQ:29 is higher than most psychophysical estimates of the
Weber fraction for speed discrimination derived from experi-
ments using fixation (between 0.05 and 0.1 for similar stimulus
conditions) (18); however, it is very close to the Weber fraction
estimated from one study (22) that had subjects track moving
targets (meanWeber fraction = 0.15), which subjects are likely to
have done in the current experiment. The SD of memory noise fit
to subjects’ data was significantly greater than zero (95% credible
interval = 0.06, 0.16), justifying its inclusion in the model.
Fig. 6 shows estimates of the populationmeans for the statistical

model parameters effectively used by subjects to estimate target
speed, with 95% credible intervals for all parameters. The results
are consistent with what would be, on average, optimal adaptation
to the variance of target speeds in a stimulus set (the true speed
variances are within the 95% credible intervals for the population
mean of that parameter fit to subjects’ data) (Fig. 6A). However,
the population mean for the assumed trial-to-trial correlation in
target speeds was significantly greater than zero (95% credible
interval for μα = 0.40, 0.54) (Fig. 6B). Thus, on average, subjects
performed near-optimally with regard to their internalized models
of speed variance but suboptimally with regard to their in-
ternalized models of trial-to-trial speed correlations.
Twenty-four subjects ran in the experiment for 2 d (eight sub-

jects in each variance condition). To examine the effect of learning
over the two sessions, we calculated the population mean of sub-
jects’ fitted observer–actor model parameters separately for the
two sessions and estimated the population mean changes in the
variance and correlation parameters for subjects from session 1 to
session 2. As can be seen in Fig. 6C andD, the changes in subjects’
internal models of speed variance were in the right direction
(compare with the average changes needed to match the true
speed variance in each condition) but not significantly different
from zero (95% credible interval = −0.19, 0.06). The changes in
subjects’ internal models of trial-to-trial correlations were also in
the right direction (decreasing from session 1 to session 2) and
marginally significant (95% credible interval = −0.31, 0.02).
We applied the same analysis to the data in experiment 2.

First, we simulated the performance of observer–actor models fit
to each subject’s data. Fig. 4 plots the model observers’ weights
for comparison with subjects’ weights. The model observers’
regression weights fit subjects quite well.
Fig. 7 shows the results of fitting the Bayesian model to sub-

jects’ data in experiment 2. Although subjects’ internal models of
speed variance were not significantly different between groups

(95% credible interval on the difference in speed variance = −2.90,
0.73), their internal models of trial-to-trial correlations were
significantly different (95% credible interval on the difference in
speed trial-to-trial correlation = −0.68, −0.16). Subjects’ internal
estimates of trial-to-trial correlations were lower in the negative-
correlation condition than the positive-correlation condition,
showing that subjects adapted their internal model of stimulus
correlations in the right direction to match the stimulus statistics.
The model estimates of subjects’ Weber fractions for speed and
their internal memory noise were very similar to those Q:30estimated
in experiment 1. The Weber fraction for speed fit to subjects’
data in experiment 2 was 0.14 (95% credible interval = 0.11,
0.16), and the SD of the memory noise on internal estimates of
speed was 0.16 (95% credible interval = 0.08, 0.20).

Discussion
The Bayesian model fit to subjects’ data shows that their per-
formance is consistent with the true statistics of target speeds in
two aspects. First, the close match between the true variances
within a stimulus set and the fitted models’ estimates of speed
variance shows that subjects internalize accurate estimates of
speed variance. Second, the fitted levels of noise on sensory
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speed signals closely approximate the Weber fractions measured
in an experiment using similar viewing conditions (in which
subjects were asked to track targets) (22). ThisQ:31 lends credence to
the hypothesis that subjects use adaptive internal models of
speed statistics to estimate object speed to plan motor actions.
This mirrorsQ:32 the results of several recent studies showing simi-

larly optimal central-tendency biases in a number of perceptual
and sensorimotor domains—estimating time intervals between
sequentially presented stimuli (4) and judging distance and di-
rection traveled from optic flow (23), coincidence timing (9),
pointing (7), and more cognitive judgments of hidden target lo-
cation (8). Thus, the current results on subjects’ central-tendency
biases add to the growing body of evidence that the brain contin-
uously adapts and uses internal models of the first-order statistics
of scene parameters (mean and variance) to estimate those
parameters from sensory data.
The current results on central-tendency biases differ from ear-

lier studies in two important ways. First, previous studies used tasks
that directly measured subjects’ estimates of a stimulus parameter,
potentially confounding response biases with perceptual biases.
The current study, largely because subjects showed different biases
in speed and distance, dissociated biases in perceptual estimates of
speed from simple response biases on the time to hit the target.
Second, the current study estimated subjects’ central-tendency
biases in the context of amodel that also incorporated n− 1 biases,
thus separating the effects of the two on subjects’ responses. To the
extent that subjectsmay have shown similar n− 1 biases in previous
studies, the weights given to internal models of stimulus means
would have been overestimated. To illustrate this point, consider
the extreme case of an observer whose internal statisticalmodel for
a stimulus parameter was that it follows a simple random walk
from trial to trial. Such an observer would show no central-ten-
dency bias (the variance of a random walk is infinite) but rather,
would use an exponential weighting of the previous sensory signals
to estimate the value for a current stimulus. The observer, pre-
sented with a sequence of finite-variance, independent stimulus
values, would seem to be biased to the mean of the stimulus in
a regression that did not include the previous stimulus history.
Moreover, the apparent central-tendency bias would be larger
when sensory noise was increased, which has been shown in
a number of the reported studies.
A final consideration that affects the current study as well as

previous studies purporting to show optimal adaptation to first-
order stimulus statistics is that one cannot estimate from a study
like thisQ:33 the absolute mean value to which subjects’ percepts are
biased. Observers can use feedback to correct any differences
between the internal standard to which their perceptual estimates
are biased and the true mean by compensatory biases in their
responses. In the current experiment, subjects could have cor-

rected errors in their internal estimates of the mean by appropri-
ately adding a timing bias in their response to minimize error. This
consideration holds for any study that measures themean to which
subjects’ responses are biased using an experimental paradigm in
which error feedback is provided. Thus, the most significant fea-
ture of the results of this Q:34and other studies of central-tendency
biases is not that subjects’ responses are biased to the true mean
but that the strength of the bias, asmeasured by the weight given to
the putative internal estimate of mean, changes with either the
variance of stimulus values or the noise in sensory signals (or both).
In terms of empirical measures, this Q:35is given by one minus the
weights given to the observable stimulus values incorporated into
a regression analysis. Having said that, it seems implausible that
subjects would adapt their central-tendency biases to match the
variance of target speeds within a stimulus set without similarly
biasing those estimates to an estimate of the mean within the
stimulus set.
Themost notable failure of optimality in subjects’ behavior is the

influence of the previous target speed on subjects’ estimates of the
current target’s speed on each trial. Although suboptimal, subjects’
biases do adapt to the correlations in the stimulus sequences pre-
sented to them; n − 1 biases decrease almost to zero when target
speeds are negatively correlated from trial to trial. This Q:36suggests
that n − 1 biases reflect subjects’ estimates of the correlations in
stimulus sequences but that subjects’ estimates of stimulus corre-
lations are positively biased. The positive-correlation bias observed
in subjects’ perceptual estimates of target speed is consistent with
the literature on temporal dependencies inmore cognitive binomial
decision-making tasks (24–26). Kareev (24), for example, presented
a sequence of binary items (Xs and Os) to subjects and asked them
to predict the next item on each trial. As in the current study,
subjects’ performance was systematically altered by the temporal
correlation of the sequences presented; however, subjects’ pre-
dictions showed a consistent bias to positive correlations.
It is not clear why the human sensorimotor system erroneously

assumes positive temporal correlations when none exist in stimulus
sequences. One proposal is that it reflects a strong prior on the
statistical structure of the world, in which strong positive temporal
correlations between events may be ubiquitous (26). The current
study has shown that the brain can adapt its internal model of
temporal correlations to more closely match those Q:37of stimulus
sequences in the proximal environment, although only partially on
the short time scale used here (1 h).
Another intriguing possibility is that the brain may be able to

switch between different models, given cues about the generative
process creating the stimuli in the environment. In support of this
idea, Green et al. (26) have shown that subjects’ betting behaviors
on the outcomes of independent sequences of random binary
events reflected an assumption of positive correlations when the
outcomes were generated by a hidden random process in the en-
vironment. When subjects actively generated the outcomes them-
selves using motor behaviors that necessarily led to independence
of outcomes, subjects correctly assumed independence.
An alternative account for the n − 1 bias is that it results from

a process that continuously adapts its internal estimate of themean
of the stimulus set, assuming that themean continuously drifts over
time and that trial-to-trial deviations from the current mean are
independent (7). We will refer to this Q:38as an adaptive mean model.
Such an account is similar to Kalman filter models of sensorimotor
adaptation, which rely on error feedback from hand movements
to adapt an internal estimate of calibration parameters mapping
motor commands to the end results of handmovements—typically
simple shifts in the mapping (27). In such models, errors in the
endpoints of pointing movements are created by motor noise
(assumed to be independent from trial to trial) superimposed on
a randomly drifting shift in the mapping from efferent signals to
hand endpoints. Sensorimotor adaptation in such models is con-
ceived of as estimating this shift—akin to estimating a drifting

negative positive
−1

−0.5

0

0.5

1
Temporal correlation 

C
or

re
la

tio
n

Condition (temporal correlation)
negative positive

0

1

2

3

4
Standard deviation

S
ta

nd
ar

d 
de

vi
at

io
n 

(d
eg

/s
)

Condition (temporal correlation)

BA

Fig. 7. Best-fitting Bayesian model parameters to subjects’ data in each
condition. Dark bars show the population means of the model fits, and the
light bars show the true statistics of the stimulus sets. Error bars represent
95% credible intervals on the parameter estimates.Q:52

Kwon and Knill PNAS Early Edition | 7 of 10

PS
YC

HO
LO

G
IC
A
L
A
N
D

CO
G
N
IT
IV
E
SC

IE
N
CE

S
PN

A
S
PL

US

745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826

834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868

knill
Sticky Note
Marked set by knill



mean in the adaptive mean model. Just as strong temporal cor-
relations in the parameters determining sensorimotor mappings
induce positive correlations in movement errors (28), strong serial
correlations in a drifting mean process would induce positive
correlations in estimated target speeds from trial to trial; thus, an
adaptivemeanmodel will seem to show n− 1 biases, resulting from
tracking the drifting mean.
To test the hypothesis that subjects’ n − 1 biases result from an

adaptive mean process, we fit a second-order Bayesian model that
assumed that the mean speed follows a simple random walk and
that trial-to-trial deviations from the drifting mean are indepen-
dent. All aspects of the observer–actor model and fitting pro-
cedure were the same as used for the correlated speed model,
with the exception of the generative model assumed for target
speeds. Themodel had the same number of free parameters as the
correlated speed model, with the variance of the random walk on
the mean replacing the correlation term in the correlated speed
model (details in SI Text, section 4). We simulated the best-fitting
observer–actor model for each subject on the stimuli used in the
experiment and performed the same regression on the model
observer’s data as we did for the human subjects. The best-fitting
adaptive mean model emulated the observed central-tendency
bias and the n − 1 bias fairly closely; however, Bayesian model
comparison revealed that the correlated speed model fits the
empirical data better by a largemargin in both the first and second
experiments (SI Text, section 4). This isQ:39 because the adaptivemean
model gives more weight to target speeds farther back from the
current trial than the correlated speed model. To examine the
weights onmore than one-back trials, we regressed the hitting time
on the current to eight previous speeds and the current distance.
The regression was applied to human subject data and the simu-
lated behavior of the best-fitting versions of the two candidate
models. As shown in Fig. 8, the weights decrease sharply after the
n-first trial for both the human observers and the correlated speed
model, whereas they decrease much more slowly for the adaptive
mean model. The results of experiment 2 further argue against the
hypothesis that the n − 1 bias results primarily from an adaptive
mean process. For such an account to fit the results of experiment
2, one would have to assume that subjects adapt to the change in
stimulus correlations by decreasing the rate with which they adapt
their internal mean estimate.

Our data do not permit fine tracking of subjects’ learning
process in the current experiment from trial to trial, partly be-
cause of the large number of free parameters in the regression
needed to account for subjects’ performance (four). For a simple
localization task, a recent study has shown that subjects learn the
value of the mean of a prior distribution within 10–20 trials and
adapt the central-tendency bias (the weight to the mean) to
a nearly asymptotic value within 100–150 trials (8). Assuming
similarly fast learning in the current experiment, subjects’ per-
formance should have been relatively stable over the four blocks
that we used to fit model data (throwing out the first two blocks,
or 200 trials, as learning trials). Berniker et al. (8) showed that
subjects’ performance in both the early trials of an experiment
and after a discrete change in variance are well-fit by a Bayesian
model that learns the mean and variance from noisy stimuli but
assumes that those parameters are fixed in the stimulus set (un-
like the adaptive mean model proposed above as a possible ac-
count for n − 1 biases).
Recent work has suggested that the visual system uses a prior

to slow speeds to interpret motion patterns, providing an expla-
nation for a number of illusory 2D motion percepts (29, 30).
Stocker and Simoncelli (17) have evenmeasured the shape of this
purported prior psychophysically using simple speed discrimi-
nation data for patterns with different contrast levels (i.e., dif-
ferent effective encoding noise levels). This work implicitly
assumes that the visual system uses a fixed prior for interpreting
the speeds of noisy sensory motion signals. It is not clear whether
the prior measured by Stocker and Simoncelli (17) and pur-
portedly underpinning our percepts of simple 2D motion pat-
terns reflects neural processing at the same level as the priors
used to plan movements in the current task. Onemight argue that
a prior to slow speeds is implemented in the motion-pooling
networks in early visual motion processing areas like macaque
MT Q:40and MST and that the prior statistical model on object
speeds affecting subjects’motor planning is implemented in later
stages of neural processing that integrate motion information to
make decisions and guide motor behavior. Psychophysical results
like the current ones cannot resolve this question; however, it is
intriguing to note that, after viewing stimuli with relatively high
mean speeds, biases in subjects’ percepts of the directions of
moving, oriented texture patterns shift away from the direction
predicted by a prior peaked at zero to a direction predicted by
a prior with a peak at higher speeds (31). This suggests Q:41that even
supposedly low-level motion percepts are affected by adaptation
to the statistical context of stimuli.
In summary, subjects in our experiments adapted their biases in

object speed estimates to the statistics of object speeds within
a local temporal context. Central-tendency biases seem to be near
optimal, in that they are consistent with an optimal Bayesian ob-
server tuned to the speed variances in a stimulus set and the sen-
sory noise within an observer. Biases to the speed of preceding
stimuli are suboptimal but nevertheless, adapt to the correlational
structure within a stimulus set. These results support the hypoth-
esis that the brain uses adaptive internal models of scene statistics
to estimate object speed from noisy visual motion signals.

Methods
Experimental Methods. Subjects Q:42. Subjects volunteered to take part in the
experiment for payment ($10/h). They were naïve with respect to the pur-
pose of the experiment and had never participated in similar experiments
before. The present study is part of an ongoing project that had been ap-
proved by the local ethics committee.

Experiment 1. Apparatus. Subjects performed the task in a virtual environment
with their head in a head-and-chin rest as illustrated in Fig. 1A. They viewed
the experimental environment displayed on a monitor through a mirror. The
mirror obscured the table and the moving hand. The distance between the
eyes and the table was ∼55 cm. A virtual finger was rendered at the position
of the subject’s active index finger, over which they wore a steel tube with
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Fig. 8. Weights on the speeds of trials n − 1 to n − 8. Human observers’
weights on the past trials (circles) are consistent with the performance of
correlated speedmodel (diamonds) in that the weights sharply drop after n −1
trial. The adaptive mean model (squares) gives relatively large weights to the
past trials. Human observers’ weights are computed from the first session of
all 48 subjects’ data. Error bars represent SEs.
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three infrared markers attached to it. TheseQ:43 were tracked by an optotrak
3020 system at 120 Hz. Subjects viewed the display stereoscopically through
LCDQ:44 shutter glasses. A steel plate was on the right side of the table where
the impact zone was projected. The plate was connected to a 5-V source,
and the steel tube worn over the index finger acted as a ground; therefore,
by measuring the voltage of the plate, we acquired a precise measurement
of the timing of hitting.
Stimuli. Fig. 1B shows the schematic arrangement of target, occluder, impact
zone, and starting cross in the working space. The target was a red circle of
1.6 cm (1 cm ∼ 1° visual angle) in diameter presented against a black
background. The position at which the target first appeared was randomly
chosen on each trial so that the visible duration of the target was distributed
uniformly between 400 and 600 ms. The occluder was a red rectangle 5.0 cm
in height. The impact zone was a green rectangle 5.0 cm in height and
3.2 cm in width. On the right side of the impact zone was another occluder
that had the same color and height as the first occluder. The left side of the
occluder, where the target disappeared, was fixed, and the center of the
impact zone within the red occluder varied randomly from trial to trial
following a log-uniform distribution. The starting cross was positioned
6.0 cm below the center of the impact zone on each trial. The starting cross
was 3.0 cm in width and height.
Procedure. Each trial started when a subject positioned his or her index finger
on the starting cross. At the moment that the index finger contacted the
starting cross, the occluder and impact zone were presented; 1,000 ms later,
a target appeared on the left side of working space, moved horizontally
rightward, and disappeared behind the occluder. Subjects were instructed to
hit the target when the target was behind the impact zone. A trial was
counted as a hit if the distance between the finger at the time of impact and
the center of target was less than 1.2 cm and the finger hit the table within
the impact zone. When subjects hit the target, the target visually exploded.
When subjects missed the target, the position of target at the moment of
impact was displayed. Each experimental session consisted of six blocks of 100
trials each. At the end of each block, subjects were informed of the total
number of hits in the block.

Fifty subjects were in the experiment. Two subjects’ data were excluded
from additional analysis because of the high error rate (more than 2.5 SD
above the group mean). Consequently, 16 subjects ran in one of three stim-
ulus conditions (low-, medium-, and high-speed variance conditions). Target
speeds had a log-uniform distribution between 9.6 and 13.5 cm/s in the low-
speed variance condition, between 8.6 and 15.2 cm/s in the medium-speed
variance condition, and between 7.2 and 18.2 cm/s in the high-speed variance
condition. Distributions for the distance to the impact zone were also log
uniform and set to equate the variance of times to the target zone across
conditions. The distributions of distances were 8.7, 19.7; 9.2, 18.6; and 11.2,
15.1 in the low-, medium-, and high-speed variance conditions, respectively.

Eight subjects in each condition ran for one session. The other eight
subjects ran for two sessions on separate days.

Experiment 2. The apparatus, stimuli, and procedure used in experiment
2 were identical to thoseQ:45 of experiment 1. Only the statistics of the target
speeds and distances to the impact zone differed. Subjects were run in one
of two conditions—a positive-correlation condition and a negative-correla-
tion condition. Target speeds on each trial were generated using a discrete
form of an Ohrnstein–Uhlenbeck process in log space (Eq. 3). The autocor-
relation function for the trial-to-trial sequence of target speeds (in log
space) is given by ρðτÞ ¼ ατv , where τ is the delay between trials. In the pos-
itive-correlation condition, αv was set equal to 0.6; in the negative-correla-
tion condition, it was set equal to −0.6. The SD of log speeds in the stimulus
set was 0.23 in both experimental conditions. Distances to the impact zone
were generated using the same stochastic process but with α set to have
a sign opposite to the value used for target speeds.

Thirty-two subjects (sixteen subjects in each condition) ran in the exper-
iment. One subject’s data were excluded from the analysis because of the
high error rate (more than 2.5 SD above the group mean).

Modeling. To model subjects’ hitting times, we assumed that observers
computed a Bayesian estimate of target speed based on noisy sensory sig-
nals and an internal model of the statistics of real target speeds. Based on
previous studies (21), we assume that subjects attentively track the object
behind the occluder based on their initial estimate of target speed. ThisQ:46

would require subjects to apply some form of decision rule (unknown to us)
to select a time to initiate a hitting movement. Assuming that both the
tracking and motor output are noisy, these processes would lead to a hitting
time that depends on the initial estimate of target speed and the distance
to the impact zone. We assumed that the output of this process can be

described by a generalization of an ideal tracker that includes bias terms on
distance and simple additive noise in log space (Eq. 5). In SI Text, section 3,
we show that a noisy tracker that integrates an internal model of target
position and speed and applies a simple decision rule to initiate a noisy
hitting movement shows near-equivalent statistics to this model (both in its
mean and variance).

The Bayesian speed estimator assumed that the logs-target speeds follow
an Ohrnstein–Uhlenbeck process (Eq. 3) and that the measurement of true
speed in each trial was corrupted by additive Gaussian sensory noise (Eq. 6).
It was also assumed that, because of the long time delays between trials, the
internal estimate of the previous speed used to estimate the current speed
would be corrupted by memory noise. This Q:47gives noisy recursive update
equations for internal estimates of speed:

Lv̂iji ¼ Lv̂iji−1 þ Ki

!
Lvsensei − Lv̂iji−1

"

Lv̂iþ!ji ¼ αv
!
Lv̂iji þ ωmem

v − μLv
"
þ μLv ;

[9]

where Lv̂iji is the estimate of the speed on trial i given all of the sensory
measurements up through those Q:48on trial i. Lv̂iþ!ji is the predictive estimate of
the speed on the next trial given the sensory information up through trial i.
ωmem
v is white Gaussian noise that represents additive memory noise. The

choice to model memory noise as additive in the log domain was purely for
computational convenience. The Kalman gain (Ki) is calculated on each trial
taking into account the uncertainty in Lv̂iþ!ji added by the memory noise (a
derivation is in SI Text, section 2).

The observer–actor model has four free parameters for the generative
model for speed, representing the variance of speed in the stimulus set, the
trial-to-trial correlations between target speeds (αv ), the variance of sensory
noise, and the variance of memory noise. It also has free parameters for the
additive and multiplicative biases and the variance of the additive noise in
the mapping from speed estimates to hitting time. To fit the parameters, we
need to compute the posterior density function

p
!
~PjL~t

"
∝p

!
L~tj~P; L~v; L~d

"
p
!
~P
"
; [10]

where ~P is a vector of model parameters, L~t is a vector containing sub-
ject’s hitting times in an experimental session (in log space), and L~v and L~d
are vectors containing the true stimulus velocities and distances in a session
in log space.

Because the model is linear and Gaussian, the likelihood function
pðL~tj~P; L~v; L~dÞ is a multidimensional Gaussian distribution with a mean vec-
tor given by ~μLt̂ ¼ wdL~d −~μLv̂ þ k and covariance matrix ΣLt̂ ¼ ΣLv̂ þ Σoutput .
L~d is a vector containing the log of the true occluder distances on each trial,
and μLv̂ is a vector containing the mean estimates of log target speed on
each trial conditioned on the true stimulus speeds. ΣL~v is the error covariance
of the log-speed estimates, and Σoutput is the covariance of the noise in
hitting time induced by attentive tracking and the motor response (a di-
agonal matrix containing the variance of the noise in Eq. 5 in every entry
along the diagonal). The model parameters determine both the model’s
mean log hitting time on each trial, μLt̂ , and the covariance of log hitting
times across trials, ΣLt̂ (both conditioned on the true stimulus conditions).

By merging the two lines of Eq. 9 into one equation and simplifying the
notation Lv̂iji to Lv̂i , we obtain

Lv̂i ¼ αv
!
Lv̂i−1 þ ωmem

v − μLv
"
þ μLv

þ Ki

!
Lvsensei − αv

!
Lv̂i−1 þ ωmem

v − μLv
"
þ μLv

"
: [11]

This equation can be divided into two independent-state update equations
representing a deterministic component (Lv̂deti ) and a random component
(Lv̂randomi ),

Lv̂i ¼ Lv̂deti þ Lv̂randomi ; [12]

where

Lv̂deti ¼ αv
!
Lv̂deti− 1 − μLv

"
þ μLv þ Ki

!
Lvsensei −

!
αv
!
Lv̂deti− 1 − μLv

"
þ μLv

""

Lv̂randomi ¼ αv
!
Lv̂randomi− 1 þ ωmem

i

"
þ Ki

!
ωsense
i − αv

!
Lv̂randomi −1 þ ωmem

i

""
:

[13]

Lvsensei is the true log speed, and ωmem
i and ωsense

i are the memory and sen-
sory noise on log speed, respectively. The random component is a zero-
mean Gaussian process; therefore, the deterministic part is the mean
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[~μLv̂ ¼ ðLv̂det1 ; Lv̂det2 ; :::; Lv̂detn Þ] of the speed estimates ,and the covariance of
Lv̂randomi is the error covariance of the estimates. The variance of Lv̂randomi

is computed recursively as follows:

var
!
Lv̂randomi

"
¼ ðαv − αvKiÞ2

!
var

&
Lv̂randomi −1

"
þ σ2mem

"
þ K2

i σ
2
sense; [14]

where σ2mem is the variance of memory noise and σ2sense is the variance of
sensory noise. The covariance between Lv̂randomi and Lv̂randomiþ1 is given by

cov
!
Lv̂randomi ; Lv̂randomiþ1

"
¼ ðαv − αvKiÞivar

!
Lv̂randomiþ1

"
: [15]

Using Eqs. 14 and 15, we can compute the full covariance matrix for the
speed estimator, ΣL~v .

We assumed a hierarchical prior on model parameters, in which the model
parameters characterizing each subject were assumed to be drawn from
independent Gaussian distributions characterizing the population dis-
tributions of the model parameters. Priors on the means and SDs of the
population distributions were set to broad uniform distributions with ranges
large enough to cover the practically possible values of the parameters. We
used Markov Chain Monte Carlo sampling (using a Metropolis–Hastings al-
gorithm) to sample from the posterior density of the population parameters.
We used 1 million iterations as a burn-in period before using samples from
the chain to estimate the posterior density function. We further thinned the
samples by selecting only every 1,000 samples in the chain (this reduced theQ:49

correlations in the samples to near zero).
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SI Text
1. Regression Model Selection. We used K-fold matched cross-
validation (1) to determine the number of previous stimulus
terms in the regression model. Data for each subject were ran-
domly divided into 25 subsets; 24 subsets were used to find the
best-fitting (least square) parameters for the regression models,
each of which had different numbers of previous stimuli as
predictors (from zero to four). The process was repeated 25
times for each of the subjects, producing 25 × 48 results (mean
square errors) for each model. The mean of the mean square
errors across subjects was minimized when the regression model
includes the current speed and distance terms and the immedi-
ately preceding speed term. Fig. S1 shows the mean of mean
square errors of the regression models. The error bar represents
the SD caused by the random division of dataset. Although the
SD is relatively large, the order of the mean square error values
stays the same across repeated applications of analysis.

2Q:1 . The optimal weights for an estimator are formulated in Eq. 8.
The optimal updates of the internal speed estimates can be

achieved by applying a modified Kalman filter that takes into
account the presence of memory noise. The filter update equa-
tions are given by

Lv̂iji−1 = αv
!
Lv̂i−1ji−1 +ωmem

v − μLv
"
+ μLv; [S1]

var
!
Lv̂iji−1

"
= α2v

!
var

!
Lv̂i−1ji−1

"
+ σ2mem

"
+
!
1− α2v

"
σ2Lv; [S2]

Lv̂iji =Lv̂iji−1 +Ki

!
Lvsensei −Lv̂iji−1

"
; [S3]

and

var
!
Lv̂iji

"
= var

!
Lv̂iji−1

"
σ2sense=

!
var

!
Lv̂iji−1

"
+ σ2sense

"
; [S4]

where Ki = varðLv̂iji−1Þ=ðvarðLv̂iji−1Þ+ σ2senseÞ and σ2Lv is the vari-
ance of stimuli speeds. By plugging Eq. S1 into Eq. S3 and
rearranging it, we get

Lv̂iji =
#
1− α

$#
1−Ki

$
μLv + α

#
1−Ki

$#
Lv̂i−1ji−1 +ωmem

v
$

+KiLvsensei : [S5]

Eq. 8 in the text is

Lv̂i =wμμLv +w1Lv̂mem
i−1 +

#
1−wμ −w1

$
Lvsensei ; [S6]

where Lv̂mem
i−1 is the estimate of speed on trial i − 1 corrupted by

memory noise. Comparing Eq. S5 with Eq. S6, we have the
optimal weight:

wμ =
#
1− α

$#
1−Ki

$

w1 = αð1−KiÞ#
1−wμ −w1

$
= 1−

#
1− α

$#
1−Ki

$
− α

#
1−Ki

$
=Ki:

[S7]

3. Comparing a Tracking Model with the Bayesian Estimation Model.
Because fitting a noisy tracking model to subjects’ data is com-
putationally intractable, we fit an estimator model in the text.

When making judgments of a moving object’s position after it
disappears, subjects appear to track the target behind the oc-
cluder using a combination of eye movements and attentional
tracking (2). Because fitting Q:2a noisy tracking model to subjects’
data is computationally intractable, we fit an estimator model to
subjects’ data in the text. This model computes a best estimate of
the time that the target will reach the impact zone and uses thatQ:3

to plan a noisy hitting movement. Here, we compare the per-
formance of a noisy tracking model with the estimator model. To
do this comparison, we fit the parameters of a noisy tracking
model to best fit the behavior of the estimator model that we fit
to subjects’ data in experiment 1 and show that the performance
of the tracking model fit was nearly equivalent to that Q:4of the
estimator model.
The tracking model that we simulated propagates an internal

estimate of the target state as follows after the target disappears
behind occlude:

%
positiont+1
speedt+1

&
=
%
1 Δt
0 β

&%
positiont
speedt

&
+
%
0
1

&
ω;

where β represents systematic drift of estimated velocity over time,
ωrepresents random noise on the internal speed estimate, and Δtis
the duration of the time step used in Monte Carlo simulations
(0.01 s). The tracker uses the estimator described in the text to
initialize the speed estimate and simply propagates the state update
equation forward in time until the predicted time to the impact
zone computed from the tracker’s position and velocity estimates
reaches 500 ms, at which point it initiates a hitting movement. The
final hitting time is computed by adding 500 m plus additive motor
noise to the time at which the movement was initiated.
Becausewe cannot easilyfit the parameters of the trackingmodel

directly to subjects’ data, we used the following procedure to fit it.
For a given set of tracking model parameters, we ran Monte Carlo
simulations of the tracking model to generate data akin to real
subjects’ data. We then fit the estimator model to the simulated
data derived from the tracker. The hitting times of the resulting
estimator are multivariate Gaussian (in log space), with mean and
covariance determined by the model parameters. We used the KLQ:5

divergence between this distribution and the distribution derived
from the estimatormodel fit to subjects’ data in experiment 1 (using
the population mean parameters) as a measure of the fit between
the trackingmodel and the estimatormodel fit to subjects’ data.We
used the fminsearch command in MATLAB (Mathworks) to find
the tracker model parameters (and associated speed estimator
parameters) that minimized this KL divergence.
Fitting results show that the best-fitting tracking model can

closely emulate the performance of the estimator model when the
performances are evaluated by the weights on the current and
preceding stimuli (Fig. S2 A and B) and the variance of hitting
times as a function of true hitting time (Fig. S2C andD). Table S1
shows that the parameters of the speed estimator used to initialize
the tracker are nearly equivalent to those Q:6used in the matched
estimator model. The facts that the statistics of model perfor-
mance are the same for matched tracker and estimator models
and that the speed estimator parameters derived from both are
essentially identical justify using the estimator model as a com-
putationally tractable stand-in for a noisy tracking model.

4. Adaptive Mean Model. The adaptive mean model assumes that
the mean speed follows a simple random walk and that trial-
to-trial deviations from the drifting mean are independent. All
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aspects of the observer–actor model and fitting procedure were
the same as used for the correlated speed model, with the ex-
ception of the generative model assumed for target speeds. The
generative model can be formalized as a second-order system as
follows:

%
Lvi+1
μLvi+ 1

&
=
%
0 1
0 1

&%
Lvi
μLvi

&
+
%
1 1
0 1

&%
ωv
ωμv

&
;

where μLvi is mean of speed in log space, and ωμv is a zero mean
Gaussian noise representing the drift rate of the mean.
As in the correlated speed model, the model observers’

measurements of true speed were corrupted by Gaussian sensory
noise, and the internal estimates of the previous mean speed
used to estimate the current mean speed were corrupted by
memory noise. Thus, the parameters of the drifting mean model
were analogous to the parameters of the correlated speed model
described in the text (and equal in number), except that the
drifting mean model has a drift rate parameter instead of the cor-
relation parameter of the correlated speed model. We fit the
adaptive mean model in the same way as the correlated speed

model using a similar hierarchical prior on the mean and SD of
the population’s parameters and the same MCMC Q:7technique to
sample from the posterior densities of the model parameters.
The central-tendency bias and the n − 1 bias predicted by the
best-fitting adaptive mean model closely match the performance
of human observer; however, regressing the data derived from
simulating each subject’s best-fitting model against the speeds on
the previous eight trials (rather than just the previous trial) re-
sulted in much higher weights to trials more than one back from
the current trial than subjects showed. As shown in Fig. 9 Q:8in the
text, subjects’ performances were much better fit by the corre-
lated speed model than the adaptive mean model.
To further test whether the correlated speed model or the

adaptive mean model best fits the data, we computed the marginal
likelihood of each model using the Gelfand–Day method. The
marginal likelihood of the correlated speedmodel was higher than
that Q:9of the adaptivemeanmodel by a largemargin given the data of
the first (log Bayes factor = 182) and second experiments (log
Bayes factor = 87). The better fit of the correlated speed model is
because of the fact that the adaptive mean model gives higher
weights to the more than n − 1 back trials than human observers.

1. Baddeley RJ, Ingram HA, Miall RC (2003) System identification applied to a visuomotor
task: Near-optimal human performance in a noisy changing task. J Neurosci 23(7):
3066–3075.

2. DeLucia PR, Liddell GW (1998) Cognitive motion extrapolation and cognitive clocking
in prediction motion tasks. J Exp Psychol Hum Percept Perform 24(3):901–914 Q:10.

Fig. S1. Results of cross-validation test. The regression model with the current speed, current distance, and immediately preceding speed terms shows the best
performance in cross-validation test.
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Fig. S2. Comparison between tracking model and estimator model. (A and B) Results of regression analysis applied to the simulation data generated from the
tracking model and the estimator model. The parameters of the estimator model were the population mean parameters estimated from experiment 1. The
parameters of the tracking model were chosen to minimize the K–L divergence between the simulation performances of the tracking model and the estimator
model. (C and D) Simulation data generated from the tracking model and the estimator model. The parameters of the estimator model were the population
mean parameters estimated from experiment 1. The parameters of the tracking model were chosen to match the performance of the tracking model to the
estimator model.Q:11

Table S1. The parameters for the velocity estimationQ:12

Parameters Tracking model Estimator model (95% CI)

Weber fraction 0.142 0.146 (0.122, 0.169)
Temporal correlation (small variance) 0.547 0.548 (0.458, 0.687)
Temporal correlation (medium variance) 0.419 0.426 (0.330, 0.563)
Temporal correlation (large variance) 0.341 0.391 (0.272, 0.503)
SD of prior (small variance) 0.158 0.151 (0.086, 0.207)
SD of prior (medium variance) 0.223 0.208 (0.175, 0.235)
SD of prior (large variance) 0.367 0.342 (0.273, 0.431)
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Q: 1_Please provide SI Text, section 2 heading.

Q: 2_Please verify and edit sentences 1 and 3 in SI Text, section 3 (they seem to be similar).

Q: 3_PNAS mandates unambiguous pronoun antecedents. Please provide an appropriate noun after

“that.”

Q: 4_PNAS mandates unambiguous pronoun antecedents. Please provide an appropriate noun after

“that.”

Q: 5_Please spell out KL in the SI.

Q: 6_PNAS mandates unambiguous pronoun antecedents. Please provide an appropriate noun after

“those.”

Q: 7_Please spell out MCMC in the SI.

Q: 8_Please edit figure 9 citation in the SI, because it does not appear in this work

Q: 9_PNAS mandates unambiguous pronoun antecedents. Please provide an appropriate noun after

“that.”

Q: 10_Please verify SI reference 2.

Q: 11_Please spell out K-L in the SI.

Q: 12_Please spell out CI in table s1.
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