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1. Regression Model Selection. We used K-fold matched cross-
validation (1) to determine the number of previous stimulus
terms in the regression model. Data for each subject were ran-
domly divided into 25 subsets; 24 subsets were used to find the
best-fitting (least square) parameters for the regression models,
each of which had different numbers of previous stimuli as
predictors (from zero to four). The process was repeated 25
times for each of the subjects, producing 25 × 48 results (mean
square errors) for each model. The mean of the mean square
errors across subjects was minimized when the regression model
includes the current speed and distance terms and the immedi-
ately preceding speed term. Fig. S1 shows the mean of mean
square errors of the regression models. The error bar represents
the SD caused by the random division of dataset. Although the
SD is relatively large, the order of the mean square error values
stays the same across repeated applications of analysis.

2. The Optimal Weights for an Estimator Formulated in Eq. 8.
The optimal updates of the internal speed estimates can be
achieved by applying a modified Kalman filter that takes into
account the presence of memory noise. The filter update equa-
tions are given by
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where Ki = varðLv̂iji−1Þ=ðvarðLv̂iji−1Þ+ σ2senseÞ and σ2Lv is the vari-
ance of stimuli speeds. By plugging Eq. S1 into Eq. S3 and
rearranging it, we get
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Eq. 8 in the text is
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where Lv̂mem
i−1 is the estimate of speed on trial i − 1 corrupted by

memory noise. Comparing Eq. S5 with Eq. S6, we have the
optimal weight:
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3. Comparing a Tracking Model with the Bayesian Estimation Model.
When making judgments of a moving object’s position after it
disappears, subjects appear to track the target behind the occluder

using a combination of eye movements and attentional tracking
(2). Because fitting a noisy tracking model to subjects’ data is
computationally intractable, we fit an estimator model to sub-
jects’ data in the text. This model computes a best estimate of the
time that the target will reach the impact zone and uses the es-
timated time to plan a noisy hitting movement. Here, we compare
the performance of a noisy tracking model with the estimator
model. To do this comparison, we fit the parameters of a noisy
tracking model to best fit the behavior of the estimator model that
we fit to subjects’ data in experiment 1 and show that the per-
formance of the tracking model fit was nearly equivalent to the
performance of the estimator model.
The tracking model that we simulated propagates an internal

estimate of the target state as follows after the target disappears
behind occlude:
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where β represents systematic drift of estimated velocity over time,
ωrepresents random noise on the internal speed estimate, and Δtis
the duration of the time step used in Monte Carlo simulations
(0.01 s). The tracker uses the estimator described in the text to
initialize the speed estimate and simply propagates the state update
equation forward in time until the predicted time to the impact
zone computed from the tracker’s position and velocity estimates
reaches 500 ms, at which point it initiates a hitting movement. The
final hitting time is computed by adding 500 m plus additive motor
noise to the time at which the movement was initiated.
Becausewe cannot easilyfit the parameters of the trackingmodel

directly to subjects’ data, we used the following procedure to fit it.
For a given set of tracking model parameters, we ran Monte Carlo
simulations of the tracking model to generate data akin to real
subjects’ data. We then fit the estimator model to the simulated
data derived from the tracker. The hitting times of the resulting
estimator are multivariate Gaussian (in log space), with mean and
covariance determined by the model parameters. We used the
Kullback-Leibler divergence between this distribution and the
distribution derived from the estimatormodel fit to subjects’ data in
experiment 1 (using the populationmean parameters) as ameasure
of the fit between the tracking model and the estimator model fit to
subjects’ data. We used the fminsearch command in MATLAB
(Mathworks) to find the tracker model parameters (and associated
speed estimator parameters) that minimized this KL divergence.
Fitting results show that the best-fitting tracking model can

closely emulate the performance of the estimator model when the
performances are evaluated by the weights on the current and
preceding stimuli (Fig. S2 A and B) and the variance of hitting
times as a function of true hitting time (Fig. S2C andD). Table S1
shows that the parameters of the speed estimator used to initialize
the tracker are nearly equivalent to the parameters used in the
matched estimator model. The facts that the statistics of model
performance are the same for matched tracker and estimator
models and that the speed estimator parameters derived from
both are essentially identical justify using the estimator model as
a computationally tractable stand-in for a noisy tracking model.

4. Adaptive Mean Model. The adaptive mean model assumes that
the mean speed follows a simple random walk and that trial-
to-trial deviations from the drifting mean are independent. All
aspects of the observer–actor model and fitting procedure were
the same as used for the correlated speed model, with the ex-
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ception of the generative model assumed for target speeds. The
generative model can be formalized as a second-order system as
follows:
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where μLvi is mean of speed in log space, and ωμv is a zero mean
Gaussian noise representing the drift rate of the mean.
As in the correlated speed model, the model observers’

measurements of true speed were corrupted by Gaussian sensory
noise, and the internal estimates of the previous mean speed
used to estimate the current mean speed were corrupted by
memory noise. Thus, the parameters of the drifting mean model
were analogous to the parameters of the correlated speed model
described in the text (and equal in number), except that the
drifting mean model has a drift rate parameter instead of the cor-
relation parameter of the correlated speed model. We fit the
adaptive mean model in the same way as the correlated speed
model using a similar hierarchical prior on the mean and SD of
the population’s parameters and the same Markov chain Monte

Carlo technique to sample from the posterior densities of the
model parameters. The central-tendency bias and the n − 1 bias
predicted by the best-fitting adaptive mean model closely match
the performance of human observer; however, regressing the
data derived from simulating each subject’s best-fitting model
against the speeds on the previous eight trials (rather than just the
previous trial) resulted in much higher weights to trials more than
one back from the current trial than subjects showed. As shown in
Fig. 8 in the text, subjects’ performances were much better fit by
the correlated speed model than the adaptive mean model.
To further test whether the correlated speed model or the

adaptive mean model best fits the data, we computed the marginal
likelihood of each model using the Gelfand–Day method. The
marginal likelihood of the correlated speedmodel was higher than
the marginal likelihood of the adaptive mean model by a large
margin given the data of the first (log Bayes factor = 182) and
second experiments (log Bayes factor = 87). The better fit of the
correlated speed model is because of the fact that the adaptive
meanmodel gives higher weights to themore than n− 1 back trials
than human observers.
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Fig. S1. Results of cross-validation test. The regression model with the current speed, current distance, and immediately preceding speed terms shows the best
performance in cross-validation test.
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Fig. S2. Comparison between tracking model and estimator model. (A and B) Results of regression analysis applied to the simulation data generated from the
tracking model and the estimator model. The parameters of the estimator model were the population mean parameters estimated from experiment 1. The
parameters of the tracking model were chosen to minimize the Kullback-Leibler divergence between the simulation performances of the tracking model and
the estimator model. (C and D) Simulation data generated from the tracking model and the estimator model. The parameters of the estimator model were the
population mean parameters estimated from experiment 1. The parameters of the tracking model were chosen to match the performance of the tracking
model to the estimator model.

Table S1. The parameters for the velocity estimation

Parameters Tracking model Estimator model (95% credible interval)

Weber fraction 0.142 0.146 (0.122, 0.169)
Temporal correlation (small variance) 0.547 0.548 (0.458, 0.687)
Temporal correlation (medium variance) 0.419 0.426 (0.330, 0.563)
Temporal correlation (large variance) 0.341 0.391 (0.272, 0.503)
SD of prior (small variance) 0.158 0.151 (0.086, 0.207)
SD of prior (medium variance) 0.223 0.208 (0.175, 0.235)
SD of prior (large variance) 0.367 0.342 (0.273, 0.431)
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